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We consider the portfolio choice problem for a long-run investor in a general con-
tinuous semimartingale model. We combine the decision criterion of pathwise growth
optimality with a flexible specification of attitude toward risk, encoded by a linear
drawdown constraint imposed on admissible wealth processes. We define the con-
strained numéraire property through the notion of expected relative return and prove
that drawdown-constrained numéraire portfolio exists and is unique, but may depend
on the investment horizon. However, when sampled at the times of its maximum
and asymptotically as the time-horizon becomes distant, the drawdown-constrained
numéraire portfolio is given explicitly through a model-independent transformation of
the unconstrained numéraire portfolio. The asymptotically growth-optimal strategy is
obtained as limit of numéraire strategies on finite horizons.

KEY WORDS: drawdown constraints, numéraire property, asymptotic growth, portfolio risk
management.

1. INTRODUCTION

1.1. Drawdown-Constrained Investment Problem

We consider an optimal investment problem under a drawdown constraint which stipu-
lates that the wealth process never falls below a given fraction α of its past maximum. In
particular, even the most adverse market crash may not reduce the investor’s wealth by
more than 100(1 − α)%. Such constraints mitigate investors’ risk by effectively introduc-
ing a stop-loss safety trigger to avoid large drawdowns. They are commonly encountered
in practice and are related to the way investments are assessed both by market participants
as well as regulators. Performance measures involving drawdowns include, for example,
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Calmar ratio, Sterling ratio, and Burke ratio, see Eling and Schuhmacher (2007) and
chapter 4 of Bacon (2008); see Lhabitant (2004) for a more detailed discussion on their
practical use. It should also be noted that drawdowns are often reported; for example,
the Commodity Futures Trading Commission’s mandatory disclosure regime stipulates
that managed futures advisers report their “worst peak-to-valley drawdown.”

We investigate decision making based on optimality expressed through the numéraire
property in the spirit of Long (1990). We require that expected relative returns of any other
nonnegative investment with respect to the wealth generated by the optimal portfolio
over the same time period are nonpositive. In fact, this choice of optimality arises in an
axiomatic way from numéraire1-invariant preferences, as set forth in Kardaras (2010b). In
the unconstrained case, the global numéraire portfolio X̂ is the wealth process which has
the property that all other investments, denominated in units of X̂, are supermartingales.
It is well known that X̂ also maximizes the asymptotic long-term growth-rate and is
the investment corresponding to the Kelly’s criterion (Kelly 1956)—see, for example,
Hakansson (1971), Bansal and Lehmann (1997) and the references therein. Some recent
contributions explored the numéraire property in a constrained investment universe. In
particular, Karatzas and Kardaras (2007) showed that with pointwise convex constraints
on the fractions invested in each asset, one can retrieve existence and all useful properties
of the numéraire portfolio. We contribute to this direction of research by providing a
detailed analysis of the numéraire property within the class of investments which satisfy
a given linear drawdown constraint.

1.2. Main Results

We work in a general continuous-path semimartingale setup. Our first main result
establishes existence of unique portfolios with the numéraire property over different
time-horizons for drawdown-constrained investment. In contrast to the unconstrained
case, the optimal strategies may depend on the time-horizon, which we demonstrate with
an explicit general construction.

Our second main result considers a long-run investor. Given the investor’s accept-
able level of drawdown α, we show that there is a unique choice of investment strategy
that almost surely asymptotically outperforms any other strategy which satisfies the
α-drawdown constraint. The optimal strategy is given explicitly in two manners. First,
we obtain a version of the mutual fund theorem: the optimal strategy αX̂ is a dynamic
version of the so-called fractional Kelly’s strategy. It invests a fraction of wealth, which
depends on the current level of drawdown, in the fund represented by X̂ and the re-
maining fraction in the baseline asset. When the domestic savings account is taken as
the baseline asset, X̂ and αX̂ have the same instantaneous Sharpe ratio. Both portfolios
X̂ and αX̂ are located at the Markowitz efficient frontier. However, αX̂ trades off long-
term growth for a pathwise capital guarantee in the form of a drawdown constraint;
in contrast, the portfolio X̂, or solutions to expected utility maximization in general,
cannot offer such capital guarantee. Second, the optimal strategy αX̂ is given as a path-
wise and model-independent transformation of the unconstrained numéraire strategy X̂.
As a result, the optimal strategy disentangles the effects of model specification and risk
attitude specification. The former yields the Kelly’s strategy X̂. The latter specifies the

1Here, in the sense of a numéraire, e.g., currency.
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transformation which is applied to X̂ to control the risk by avoiding drawdowns beyond
a certain magnitude.

Detailed structural asymptotic properties of the optimal strategies αX̂ are also dis-
cussed; for example, we show that αX̂ is the only wealth process which may enjoy the
numéraire property along increasing sequences of stopping times that tend to infinity.
More importantly, a version of the so-called turnpike theorem is established: portfolios
enjoying the numéraire property for investment with long time-horizons are close (in a
strong sense) to αX̂ at initial times.

We stress the fact that the results presented here do not follow from previous literature
because of the generality of our setup and the complex nature of drawdown constraints.
In fact, novel characteristics appear in this setting. As was already mentioned, portfolios
with the numéraire property, which maximize logarithmic utility, may depend on the
financial planning horizon. Interestingly, the asymptotic solution does not depend on
the way the financial planning horizon approaches infinity and is described explicitly,
which is important from an investor’s viewpoint. Furthermore, we emphasize that the
findings of this paper are essentially model-independent and, therefore, rather robust.
Finally, we wish to draw some attention to the underlying philosophy relative to the
practical perspective. A long-run investor will only witness a single realization of the
market dynamics. Therefore, pathwise outperformance is a very natural and appealing
decision criterion. We show that it is possible to combine it with risk mitigation, which is
done by restricting the universe of acceptable trajectories of wealth evolution and not by
complicating the investor’s decision criteria. This, we find, adds an interesting point to
the debate in economics around Kelly’s criterion, which is revisited later on in the text.

1.3. Mathematical Tools

To establish existence of the numéraire portfolio for an arbitrary time-horizon, we
are inspired by existing results. We analyze the set of possible wealth outcomes at a
specific time corresponding to wealth processes which satisfy the drawdown constraint
and combine the classical optional decomposition theorem of Föllmer and Kramkov
(1997) and Stricker and Yan (1998) with arguments from Kardaras (2010b) and Delbaen
and Schachermayer (1994). However, classical arguments to show uniqueness fail since,
in general, if we are given two strategies which satisfy the drawdown constraint and we
follow one strategy up to a (stopping) time and then switch to the other we may violate the
drawdown constraint. New arguments are developed which involve switching strategies
at times when new maxima are attained.

An important tool throughout our study is the Azéma–Yor transformation, a result in
stochastic analysis which allows one to build an explicit, model-independent, bijection
between all wealth processes and wealth processes satisfying a drawdown constraint. This
transformation was established in a general semimartingale setup in Carraro, El Karoui,
and Oblój (2012) and used by Cherny and Obłój (2013) in a utility maximization setting.
However, we note that a special case of it was already used in Cvitanić and Karatzas
(1994). We show here that the Azéma–Yor transform αX̂ of X̂ has the numéraire property
within the class of portfolios satisfying the α-drawdown constraint, both in an asymptotic
sense and when sampled at times of its maximum. Since optimal strategies may depend on
the time-horizon, it is not true that all other drawdown-constrained wealth processes are
supermartingales in units on αX̂, a feature often used previously to define the numéraire
property—see Long (1990) or Platen and Heath (2006).
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1.4. Related Literature

As outlined previously, drawdown constraints have features appealing to various par-
ticipants in financial markets and are often encountered in practice, in either explicit or
implicit manner. Drawdown levels often serve as basis for performance measurement and
are of prime importance both for investors and fund managers, see Browne and Kosowski
(2010). A large drawdown could lead to a flight of capital from the fund, a threatening
situation from a managerial perspective. Drawdown constraints may also result implic-
itly from the structure of hedge fund managers’ incentives through the high-water mark
provision—see, e.g., Guasoni and Obłój (2016).

Despite their practical importance, there are relatively few theoretical studies on port-
folio selection with drawdown constraints. The main obstacle is the inherent difficulty
associated with pathwise constraint which involves the running maximum process. Draw-
down constraints were first considered in a continuous-time framework by Grossman
and Zhou (1993), then by Cvitanić and Karatzas (1994) and more recently by Cherny
and Obłój (2013). These contributions focused on maximizing the growth rate of ex-
pected utility and show that imposing drawdown constraints is essentially equivalent
to changing investors’ risk aversion. More precisely, Cherny and Obłój (2013) consider
two investors in a general semimartingale model: one endowed with a power utility with
risk aversion γ and facing an α-drawdown constraint and another with risk aversion
(γ + α(1 − γ )) and no constraints. They prove that the two are equivalent in the sense
that they both achieve the same asymptotic growth rate of expected utility, and that their
optimal portfolios are related through an explicit model-independent transformation.

Magdon-Ismail and Atiya (2004) derived results linking the maximum drawdown to
average returns. In Chekhlov, Uryasev, and Zabarankin (2005), the problem of max-
imizing expected return subject to a risk constraint expressed in terms of the draw-
down was considered and solved numerically in a simple discrete time setting. Finally,
in continuous-time models, drawdown constraints were also recently incorporated into
problems of maximizing expected utility from consumption—see Elie (2008) and Elie and
Touzi (2008). Options on drawdowns were also explored as instruments to hedge against
portfolio losses, see Vecer (2006). Furthermore, the maximization of growth subject to
constraints arising from alternative risk measures is discussed in Pirvu and Žitković
(2009).

While drawdown constraints are well motivated by market practice of assessing and
reporting investment performance, the implication of the above works is that the param-
eter α ∈ [0, 1) is akin to risk aversion and allows for a flexible specification of attitude
toward risk. As such, our results contribute to the debate whether an investor with a
long financial planning horizon should use the growth-optimal strategy, as postulated by
Kelly (1956). In this time-honored dispute (see MacLean, Thorp, and Ziemba 2011), the
opposite sides were assumed by two among the most prominent scholars in the field: while
Paul Samuelson fiercely criticized the use of Kelly’s strategy, including the famous refute
by Samuelson (1979) in words of one-syllable, Harry Markowitz argued for it already in
his 1959 book (see also Markowitz 2006). The arguments in favor of Kelly’s investment
strategy rely on the fact that asymptotic growth should be of prime interest for long-run
investment. The arguments against it point to the fact that the growth-rate maximization
does not take into account investor’s risk appetite and is too simplistic. Samuelson, as well
as many others including seminal works of Merton (1971), looked instead at maximizing
expected utility. While Kelly’s strategy itself falls into this category, with the utility func-
tion being the logarithmic one, choices of other utility functions result in criteria that can
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accommodate different risk preference profiles. Our work may be interpreted as a way to
merge the opposing sides: we adopt the pathwise outperformance as a very natural and
appealing decision criterion but we show that it is possible to combine it with risk mit-
igation. However, the latter is done by restricting the universe of acceptable trajectories
of wealth evolution, as opposed to elaborating on the investor’s decision criteria.

1.5. Structure of the Paper

Section 2 contains a description of the financial market and introduces drawdown-
constrained investments. In Section 3, the numéraire property of drawdown-constrained
investments is explored. Main results are Theorem 3.5, establishing existence and unique-
ness of portfolios with the numéraire property for finite time-horizons, and Theorem 3.8,
which explicitly describes an investment that has the numéraire property at (stopping)
times where it achieves its maximum—in particular, this includes its asymptotic numéraire
property. More asymptotic optimality properties of the aforementioned investment are
explored in Section 4: its asymptotic (or long-run) growth optimality is taken up in The-
orem 4.1, and a strong result in the spirit of turnpike theorems is given in Theorem 4.7.
Certain technical proofs are collected in Appendix A. Finally, in Appendix B we present
an example in order to shed more light on the conclusion of the turnpike-type Theorem
4.7.

2. MARKET AND DRAWDOWN CONSTRAINTS

2.1. Financial Market

We consider a general frictionless financial market model with the only assumption
of continuous price processes. Specifically, on a stochastic basis (�,F, F, P), where F =
(Ft)t∈R+ is a filtration satisfying the usual hypotheses of right-continuity and saturation
by P-null sets of F , let S = (S1, . . . , Sd ) be a d-dimensional semimartingale with a.s.
continuous paths—see, for example, Karatzas and Shreve (1991). Each Si , i ∈ {1, . . . , d},
is modeling the random movement of an asset price in the market. All the prices Si are
given in units of a fixed traded baseline asset. It is customary to assume that the baseline
asset is the (domestic) savings account and then Si are referred to as discounted prices,
but in our context it is not important what units are fixed (i.e., which asset is taken as the
baseline).

Define X to be the class of all nonnegative processes X of the form

X = 1 +
∫ ·

0
(Ht, dSt) = 1 +

∫ ·

0

(
d∑

i=1

Hi
t dSi

t

)
,(2.1)

where H = (H1, . . . , Hd ) is a d-dimensional predictable and S-integrable2 process.
Throughout the paper, (·, ·) is used to (sometimes, formally) denote the inner prod-
uct in R

d . The process X of (2.1) represents the outcome of trading according to the

2All integrals are understood in the sense of vector stochastic integration. For this reason, we use
notation such as

∫ ·
0(
∑d

i=1 Hi
t dSi

t ) instead of
∑d

i=1

∫ ·
0 Hi

t dSi
t , the latter corresponding to componentwise

stochastic integration, which would only make sense if all stochastic integrals
∫ ·

0 Hi
t dSi

t were well-defined
for i ∈ {1, . . . , d}. Vector stochastic integration is more general and flexible than componentwise stochastic
integration; its use has proved essential in order to formulate elegant versions of the Fundamental Theorem
of Asset Pricing (Delbaen and Schachermayer 1994), as well as to ensure that optimal wealth processes
exist—for example, it is crucial for the validity of Theorem A.1, which is used extensively throughout the
paper.
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investment strategy H, denominated in units of the baseline asset. In the sequel, we are
interested in ratios of portfolios; therefore, the initial value X0 plays no role as long as it
is the same for all investment strategies. For convenience, we assume X0 = 1 holds for all
X ∈ X .

In the following, we characterize in a precise manner the rich world of models that we
permit for our market. These include most continuous-path models that have been studied
in the literature. Essential is the existence of the (unconstrained) numéraire portfolio—see
Long (1990). However, existence of an equivalent risk-neutral probability measure is not
requested; therefore, certain forms of classical arbitrage are permitted.

DEFINITION 2.1. We shall say that there are opportunities for arbitrage of the first kind
if there exist T ∈ R+ and an FT-measurable random variable ξ such that:

�
P[ξ ≥ 0] = 1 and P[ξ > 0] > 0;

� for all x > 0 there exists X ∈ X , which may depend on x, with P[xXT ≥ ξ ] = 1.

The following mild and natural assumption is key to the development of the paper.

ASSUMPTION 2.2. In the market described above, the following hold:

(A1) There is no opportunity for arbitrage of the first kind.
(A2) There exists X ∈ X such that P[limt→∞ Xt = ∞] = 1.

Condition (A1) in Assumption 2.2 is a minimal market viability assumption. On the
other hand, condition (A2) asks for sufficient market growth in the long run. They are
equivalent to the existence and growth condition of the numéraire portfolio.

THEOREM 2.3. Condition (A1) of Assumption 2.2 is equivalent to:

(B1) There exists X̂ ∈ X such that X/X̂ is a (nonnegative) local martingale for all
X ∈ X .

Under the validity of (A1) or (B1), condition (A2) of Assumption 2.2 is equivalent to:

(B2) P[limt→∞ X̂t = ∞] = 1.

REMARK 2.4. The equivalence of (A1) and (B1) was first discussed in Long (1990). If
the process X̂ in (B1) exists, then it is unique and is said to have the numéraire property.
It is well known that it solves the log-utility maximization problem on any finite time-
horizon, and that it achieves optimal asymptotic (or long-term) growth. We shall revisit
these properties in a more general setting—see Remark 3.6 and Theorem 4.1.

The proof of Theorem 2.3 is given in Subsection A.1 of Appendix A. In fact, it is
a special case of a more general Theorem A.1 therein which contains several useful
equivalent conditions to the ones presented in Assumption 2.2.

2.2. Drawdown Constraints

To each wealth process X ∈ X , we associate its running maximum process X∗ defined
via X∗

t := supu∈[0,t] Xu for t ∈ R+. The difference X∗ − X between the running maximum
and the current wealth is called the drawdown process. As we argued in the introduction,
different participants in financial markets may be interested to restrict the universe of
their strategies to the ones which do not permit for drawdowns beyond a fixed fraction
of the wealth’s running maximum.
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For any α ∈ [0, 1), we write αX for the class of wealth processes X ∈ X such that
X∗

t − Xt ≤ (1 − α)X∗
t , for all t ≥ 0. Equivalently, X ∈ αX if and only if X/X∗ ≥ α holds

identically. The [0, 1]-valued process X/X∗ is called the relative drawdown process as-
sociated to X. It is clear that βX ⊆ αX for 0 ≤ α ≤ β < 1, and that 0X = X . Note that
if X ∈ X satisfies X ≥ αX∗ on the interval [0, T] (here, T can be any stopping time),
then (XT∧t)t∈R+ ∈ αX ; therefore, it is appropriate to use αX as the set of wealth processes
regardless of the investment horizon.

Interestingly, there is a one-to-one correspondence between wealth processes in X
and wealth processes in αX for any α ∈ [0, 1). The bijection was derived explicitly in
terms of the so-called Azéma–Yor processes in Carraro et al. (2012, theorem 3.4), and
recently exploited in Cherny and Obłój (2013), in a general setting of possibly nonlinear
drawdown constraints. This elegant machinery simplifies greatly in the case of “linear”
drawdown constraints considered here, and we provide explicit arguments, similarly to
the pioneering work of Cvitanić and Karatzas (1994). We first discuss how processes in
X generate processes in αX—the converse will be established in the proof of Proposition
2.5. For X ∈ X and α ∈ [0, 1), define a process αX via

αX := α(X∗)1−α + (1 − α)X(X∗)−α.(2.2)

Using the fact that
∫∞

0 I{Xt<X∗
t }dX∗

t = 0 a.s. holds, an application of Itô’s formula gives

αX = 1 +
∫ ·

0
(1 − α)(X∗

t )−αdXt,(2.3)

which implies that αX ∈ X . Furthermore, (2.2) gives α(X∗)1−α ≤ αX ≤ (X∗)1−α. Note also
that times of maximum of X coincide with times of maximum of αX and consequently
αX∗ = (X∗)1−α. It follows that

αX
αX∗ = α(X∗)1−α + (1 − α)X(X∗)−α

(X∗)1−α
= α + (1 − α)

X
X∗ ≥ α,(2.4)

implying αX ∈ αX . The converse is given by

PROPOSITION 2.5 (proposition 2.2 of Carraro et al. 2012). It holds that αX = {αX |
X ∈ X }.

Proof. In the notation of Carraro et al. (2012), we have αX = MFα (X) with Fα : R+ �→
R+ defined via Fα(x) = x1−α for x ∈ R+ and X = MGα (αX) with Gα = F−1

α . �
One can rewrite equation (2.3) in differential terms as

dαXt
αXt

=
(

(1 − α)(X∗
t )−α Xt

αXt

)
dXt

Xt
=

αXt − α
(
αX∗

t

)
αXt

dXt

Xt

for t < inf{u ∈ R+ | Xu = 0} = inf{u ∈ R+ | αXu − α(αX∗
u) = 0}. The above equation car-

ries an important message: for X ∈ X , the way that αX is built is via investing a proportion

απ X :=
αX − α (αX∗)

αX
= 1 − α

αX/αX∗ = (1 − α)(X/X∗)
α + (1 − α)(X/X∗)

in the fund represented by X, and the remaining proportion 1 − απ X in the baseline
asset. In particular, when the baseline asset is the domestic savings account, it follows
that the Sharpe ratios of X and αX are the same. Note that 0 ≤ απ X ≤ 1 − α (so that α ≤
1 − απ X ≤ 1). Furthermore, απ X depends only on α ∈ [0, 1) and the relative drawdown
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X/X∗ of X. In fact, the proportion απ X invested in the underlying fund represented by
X is an increasing function of the relative drawdown X/X∗.

Recall the numéraire portfolio process X̂ in (B1) in Theorem A.1. When the above
discussion is applied to αX̂, defined from X̂ via (2.2), it follows from Platen and Heath
(2006, theorem 11.1.3 and corollary 11.1.4) that αX̂ is a locally optimal portfolio, in
the sense that it locally maximizes the excess return over all investments with the same
volatility. In view of (A.2), the wealth process X̂ is given explicitly in terms of the drift
and quadratic covariation process of the multidimensional asset-price process. It follows
that αX̂ for α ∈ [0, 1) is explicitly specified as well.

Even though the numéraire portfolio X̂ has optimal growth in an asymptotic sense (in
this respect, see also Theorem 4.1), it is a quite risky investment. In fact, it experiences
arbitrarily large flights of capital, as its relative drawdown process X̂/X̂∗ will become
arbitrarily close to zero infinitely often. This is in fact equivalent to the following, seem-
ingly more general statement, showing an oscillatory behavior of the relative drawdown
for all wealth processes αX̂, α ∈ [0, 1).

PROPOSITION 2.6. Under Assumption 2.2, it holds that

α = lim inf
t→∞

(
αX̂t

αX̂∗
t

)
< lim sup

t→∞

(
αX̂t

αX̂∗
t

)
= 1, a.s. ∀α ∈ [0, 1).

The proof of Proposition 2.6 is given in Subsection A.2 of Appendix A.

3. THE NUMÉRAIRE PROPERTY

3.1. Expected Relative Return

Fix a stopping time T and X, X′ ∈ X , and define the return of X relative to X′ over the
period [0, T] via

rrT (X|X′) := lim sup
t→∞

(
XT∧t − X′

T∧t

X′
T∧t

)
= lim sup

t→∞

(
XT∧t

X′
T∧t

)
− 1.

(The convention 0/0 = 1 is used throughout.) In other words, rrT (X|X′) = (XT −
X′

T)/X′
T holds on the event {T < ∞}, while rrT (X|X′) = lim supt→∞((Xt − X′

t)/X′
t) =

rr∞(rrT (X|X′) holds on the event {T = ∞}. The above definition conveniently covers
both cases. Observe that rrT (X|X′) is a [−1, ∞]-valued random variable. Therefore, for
any stopping time T and X, X′ ∈ X , the quantity

ErrT(X|X′) := E
[
rrT (X|X′)

]
is well defined and [−1, ∞]-valued. ErrT(X|X′) represents the expected return of X relative
to X′ over the time period [0, T].

The concept of expected relative returns is introduced for purposes of portfolio se-
lection. A first idea that comes to mind is to proclaim that X′ ∈ X is “strictly better”
than X ∈ X for investment over the period [0, T] if ErrT(X′|X) > 0. However, this is not
an appropriate notion: it is easy to construct examples where both ErrT(X′|X) > 0 and
ErrT(X|X′) > 0 hold. This fact is connected to Siegel’s paradox—see Siegel (1972); more
information is given in Remark 3.4. The reason is that, in general, rrT (X|X′) �= −X′|X).
In fact, Proposition 3.3 implies that rrT (X|X′) ≥ −X′|X), with equality holding only on
the event {limt→∞(XT∧t/X′

T∧t) = 1}. A more appropriate definition would call X′ ∈ X
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“strictly better” than X ∈ X for investment over the period [0, T] if both ErrT(X′|X) > 0
and ErrT(X|X′) ≤ 0 hold. In fact, because of the inequality rrT (X|X′) ≥ −rrT (X′|X),
ErrT(X|X′) ≤ 0 is enough to imply ErrT(X′|X) ≥ 0, and one has ErrT(X′|X) > 0 in the
case where P[limt→∞(XT∧t/X′

T∧t) = 1] < 1.
The discussion of the previous paragraph can be summarized as follows: while pos-

itive expected returns of X ∈ X with respect to X′ ∈ X do not imply that X is a better
investment than X′, we may regard nonpositive expected returns of X ∈ X with respect
to X′ ∈ X to indicate that X′ is a better investment than X. Given the use of “lim sup” in
the equality rrT (X|X′) = lim supt→∞((Xt − X′

t)/X′
t), valid on {T = ∞}, it seems partic-

ularly justified to regard X′ as better than X when Err∞(X|X′) ≤ 0 holds, at least in an
asymptotic sense. We are led to the following concept:

DEFINITION 3.1. We say that X′ has the numéraire property in a certain class of wealth
processes for investment over the period [0, T] if ErrT(X|X′) ≤ 0 holds for all other X in
the same class.

REMARK 3.2. The above definition is close in spirit to the numéraire in Long (1990).
However following closely Long (1990) and the results pertaining to the nonconstrained
case, one may be tempted to define the numéraire portfolio in a certain class of wealth
processes by postulating that all other wealth processes in this class are supermartingales
in units of the numéraire. However, in the context of drawdown constraints this would
be a void concept as portfolios with the numéraire property may depend on the planning
horizon—see Proposition 3.13.

The next result contains some useful properties of (expected) relative returns. In par-
ticular, it implies that the terminal value of an investment with the numéraire property
within a certain class of processes for investment over a specified period of time is essen-
tially unique.

PROPOSITION 3.3. For any stopping time T, any X ∈ X and any X′ ∈ X , it holds that

rrT (X′|X) ≥ − rrT (X|X′)
1 + rrT (X|X′)

≥ −rrT (X|X′),

with equality on {T < ∞}. Furthermore, the following equivalence is valid:

ErrT(X′|X) ≤ 0 and ErrT(X|X′) ≤ 0 ⇐⇒ P

[
lim

t→∞

(
XT∧t

X′
T∧t

)
= 1

]
= 1.

Proof. To begin with, note that

1 + rrT (X|X′) = lim sup
t→∞

(
XT∧t

X′
T∧t

)
≥
(

lim sup
t→∞

(
X′

T∧t

XT∧t

))−1

= 1
1 + rrT (X′|X)

,

with equality holding on {T < ∞}. Continuing, we obtain

X|rrT (X′) + rrT (X′|X) ≥ 1
1 + rrT (X′|X)

− 1 + rrT (X′|X) = rrT (X′|X)2

1 + rrT (X′|X)
.

Upon interchanging the roles of X and X′, we also obtain the corresponding inequality
rrT (X|X′) + rrT (X′|X) ≥ rrT (X|X′)2/(1 + rrT (X|X′)); therefore,

rrT (X|X′) + rrT (X′|X) ≥ rrT (X′|X)2

1 + rrT (X′|X)
∨ rrT (X|X′)2

1 + rrT (X|X′)
.(3.1)
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It immediately follows that rrT (X′|X) + rrT (X|X′) ≥ 0. Therefore, by (3.1), the conditions
ErrT(X′|X) ≤ 0 and ErrT(X|X′) ≤ 0 are equivalent to P[rrT (X|X′) = 0 = rrT (X′|X)] = 1,
which is in turn equivalent to P[limt→∞(XT∧t/X′

T∧t) = 1] = 1. �
REMARK 3.4. The inequality ErrT(X|X′) + ErrT(X′|X) ≥ 0 for any stopping time T,

any X ∈ X and any X′ ∈ X , appearing in the proof of Proposition 3.3 is known in the
literature as Siegel’s paradox. If X/X′ has the interpretation of a currency exchange rate,
Siegel’s paradox states the following: given that expected relative rates of return are used
as the objective, it is possible that a domestic investor may want to hold foreign currency
for its positive expected return (in domestic units), while at the same a foreign investor
wants to hold the domestic currency for its positive expected return (in foreign units).
Equation (2.1) can be interpreted as a pointwise quantitative version of this paradox in
terms of investment opportunities. The paragraph right before Definition 3.1 paves a way
that avoids the pitfalls created by Siegel’s paradox.

It follows from Proposition 3.3 that if ErrT(X|X′) ≤ 0 and ErrT(X′|X) ≤ 0 both hold,
then XT = X′

T a.s. on {T < ∞}, while limt→∞(Xt/X′
t) = 1 a.s. on {T = ∞}, the latter

being a version of “asymptotic equivalence” between X and X′.
The next result establishes existence of a process with the numéraire property in the

class αX sampled at T for all α ∈ [0, 1) and finite time-horizon T, and shows that such
process is uniquely defined on the stochastic interval [0, T] = {(ω, t) ∈ � × R+ | 0 ≤ t ≤
T(ω)}. (Note that the latter uniqueness property is stronger than plain uniqueness of the
terminal value of processes with the numéraire property that is guaranteed by Proposition
3.3.) Theorem 3.8 will address the possibility of an infinite time-horizon.

THEOREM 3.5. Let T be a stopping time with P[T < ∞] = 1. Under condition (A1) of
Assumption 2.2, there exists X̃ ∈ αX , which may depend on T, such that ErrT(X|X̃) ≤ 0
holds for all X ∈ αX . Furthermore, X̃ has the following uniqueness property: for any other
process Z̃ ∈ αX such that ErrT(X|Z̃) ≤ 0 holds for all X ∈ αX , X̃ = Z̃ a.s. holds on [0, T].

The proof of Theorem 3.5 is given in Subsection A.3 of Appendix A.

REMARK 3.6. In the notation of Theorem 3.5, the log-utility maximization problem
at time T is solved by the wealth process α̃X. Indeed, the inequality log(x) ≤ x − 1, valid
for all x ∈ R+, gives

E

[
log

(
XT

X̃T

)]
≤ E

[
XT

X̃T
− 1

]
= ErrT(X|X̃) ≤ 0

for all X ∈ αX . This is a version of relative expected log-optimality, which turns to
actual expected log-optimality as soon as the expected log-maximization problem is
well-posed—in this respect, see also Karatzas and Kardaras (2007, subsection 3.7).

In view of Theorem 3.5, the above discussion ensures existence and uniqueness of
expected log-utility optimal wealth processes for finite time-horizons in a drawdown-
constrained investment framework. To the best of the authors’ knowledge, results re-
garding existence and uniqueness of optimal processes for utility maximization problems
involving finite time-horizon and drawdown constraints are absent from the literature.

3.2. The Numéraire Property at Times of Maximum of the Numéraire Portfolio

When α = 0, the fact that X/X̂ is a nonnegative supermartingale and the optional
sampling theorem imply that ErrT(X|X̂) ≤ 0 holds for all stopping times T and all X ∈ X .



78 C. KARDARAS, J. OBŁÓJ, AND E. PLATEN

Therefore, the process X̂ has a “global” (in time) numéraire property. Furthermore, the
supermartingale convergence theorem implies that limt→∞(Xt/X̂t) P-a.s. exists for all
X ∈ X ; therefore,

rr∞(X|X̂) = lim
t→∞

(
Xt − X̂t

X̂t

)
= lim

t→∞

(
Xt

X̂t

)
− 1.(3.2)

For finite time-horizons, the situation is more complicated for α ∈ (0, 1). In Theorem 3.8,
we shall see that αX̂ has the numéraire property in αX for certain stopping times (which
include the asymptotic case T = ∞). However, αX̂ does not have the numéraire property
for all finite time-horizons, as Proposition 3.13 shows.

We continue the development by defining a class of stopping times which will be
important in the sequel.

DEFINITION 3.7. A stopping time τ will be called a time of maximum of X̂ if X̂τ = X̂∗
τ

holds a.s. on the event {τ < ∞}.
A couple of remarks are in order. First, from (2.2) one can immediately see that

times of maximum of X̂ are also times of maximum of αX̂ for all α ∈ [0, 1). Second, the
restriction in the definition of a time τ of maximum of X̂ is only enforced on {τ < ∞}.
Under Assumption 2.2, and in view of Theorem A.1, one has X̂τ = X̂∗

τ = ∞ holding a.s.
on {τ = ∞}. For this reason, τ = ∞ is an important special case of a time of maximum
of X̂.

The following theorem, the second main result of this section, establishes the numéraire
property of αX̂ in αX over [0, ∞] or, more generally, over [0, τ ] for any time τ of maximum
of X̂. We recall that αX = {αX | X ∈ X }.

THEOREM 3.8. Recall that αX̂ ∈ αX is defined from X̂ via (2.2). Under Assumption 2.2,
for any α ∈ [0, 1) and X ∈ X , we have:

(1) limt→∞(αXt/
αX̂t) a.s. exists in R+. Moreover,

rr∞(αX|αX̂) =
(

lim
t→∞

(
Xt

X̂t

))1−α

− 1 = (
1 + rr∞

(
X|X̂))1−α − 1.(3.3)

(2) For σ and τ two times of maximum of X̂ with σ ≤ τ , it a.s. holds that

E
[
rrτ

(
αX|αX̂) ∣∣ Fσ

] ≤ rrσ

(
αX|αX̂) .(3.4)

In particular, letting σ = 0, Errτ (Z|αX̂) ≤ 0 holds for any α ∈ [0, 1) and Z ∈ αX .

We proceed with several remarks on the implications of Theorem 3.8, the proof of
which is given in Subsection A.4 of Appendix A.

REMARK 3.9. The existence of the limit in (3.2) is guaranteed by the nonnegative
supermartingale convergence theorem. In contrast, proving that limt→∞(αXt/

αX̂t) exists
a.s. for X ∈ X and α ∈ (0, 1) is more involved, since, in general, the process αX/αX̂ does
not have the supermartingale property. In fact, the existence of the latter limit is proved
together with the asymptotic relationship (3.3). Note, however, that an analogue of the
supermartingale property is provided by statement (2) of Theorem 3.8. Indeed, (3.4)
implies that, when sampled at an increasing sequence of times of maximum of X̂, the
process αX/αX̂ is a supermartingale along these times for all X ∈ X .
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REMARK 3.10. Given statement (1) of Theorem 3.8, the fact that Err∞(αX|αX̂) ≤ 0 holds
for any X ∈ X and α ∈ [0, 1) is a simple consequence of Jensen’s inequality. Indeed, for
any X ∈ X ,

Err∞
(
αX|αX̂) = E

[(
1 + rr∞(X|X̂)

)1−α
]

− 1

≤ (
E
[
1 + rr∞(X|X̂)

])1−α − 1

= (
1 + Err∞(X|X̂)

)1−α − 1 ≤ 0.

The full proof of statement (2) of Theorem 3.8, given in Appendix A, is more involved.

REMARK 3.11. The fact that rr∞(αX|αX̂) = (1 + rr∞(X|X̂))1−α − 1 holds for all α ∈
[0, 1) can be easily seen to imply that |rr∞(βX|βX̂)| ≤ |rr∞(αX|αX̂)| holds whenever 0 ≤
α ≤ β < 1. In other words, using the same generating wealth process X and enforcing
harsher drawdown constraints reduces the (asymptotic) difference in the performance of
the drawdown-constrained process αX against the long-run optimum αX̂.

REMARK 3.12. Let us consider the hitting times of X̂, parameterized on the logarithmic
scale:

τ� := inf{t ∈ R+ | X̂t = exp(�)}, � ∈ R+.(3.5)

Note that τ� is a time of maximum of X̂. Since times of maximum of X̂ coincide with
times of maximum of αX̂ for α ∈ [0, 1), τ� = inf{t ∈ R+ | αX̂t = exp((1 − α)�)} holds for
all α ∈ [0, 1). According to Assumption 2.2, P[τ� < ∞] = 1 holds for all � ∈ R+.

By Remark 3.6, the log-utility maximization problem at time τ� for the class αX is solved
by the wealth process αX̂. Moreover, assume that U : R+ �→ R ∪ {−∞} is any increasing
and concave function such that U(x) > −∞ for all x ∈ (0, ∞). Jensen’s inequality implies
that

E
[
U (αXτ�

)
] ≤ U

(
E
[
αXτ�

]) ≤ U(exp((1 − α)�)) = E
[
U
(
αX̂τ�

)]
, for all X ∈ X .

It follows that any (and not only the logarithmic) utility maximization problem at a
hitting time τ� for the class αX is solved by the wealth process αX̂. This is a remarkable
fact that is extremely robust, since it does not require any modeling assumptions.

Theorem 3.8, coupled with some simple observations, implies that drawdown-
constrained portfolios with the numéraire property may depend on the time-horizon.
This fact, which was already hinted in several places (for example, in Remark 3.2), is
established below.

PROPOSITION 3.13. Under Assumption 2.2, there exist X ∈ αX and stopping times T and
τ with P[T < τ < ∞] = 1 such that X has the numéraire property in αX over the investment
period [0, τ ], while X fails to have the numéraire property in αX over the investment period
[0, T].

Proof. Fix α ∈ (0, 1). Define T := inf{t ∈ (0, ∞) | X̂t/X̂∗
t = α}, and observe that

Proposition 2.6 implies that P[T < ∞] = 1 holds. Furthermore, define τ := inf{t ∈
(T, ∞) | X̂t = X̂∗

T}. Clearly, τ is a time of maximum of X̂; furthermore, Assumption
2.2 implies that P[τ < ∞] = 1. In view of Theorem 3.8, αX̂ ∈ αX has the numéraire prop-
erty in αX over the investment period [0, τ ].

Continuing, note that X̂T ≡ X̂T∧· ∈ αX . The numéraire property of X̂ in X ⊇ αX im-
plies that ErrT(X|X̂T) ≤ 0 holds for all X ∈ αX , resulting in the numéraire property of
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X̂T in αX over the investment period [0, T]. Since P[αX̂T = X̂T] = 0, it follows that αX̂T

fails to have the numéraire property in αX over the investment period [0, T]. �

With the stopping time T as defined in the proof of Proposition 3.13, note the fol-
lowing: if one follows the nonconstrained numéraire portfolio X̂ up to T, the drawdown
constraints will mean that one has to invest all capital in the baseline account from time
T onward. It is clear that this strategy will not be long-run optimal. Further discussion
on the subject of long-run optimality is given in Section 4.

4. MORE ON ASYMPTOTIC OPTIMALITY

4.1. Maximization of Long-Term Growth

The next theorem is concerned with the asymptotic growth-optimality property of αX̂
in αX for α ∈ [0, 1). It extends the result of Cvitanić and Karatzas (1994, section 7) to a
more general setting and with a simpler proof. In the subsequent subsection we continue
with a considerably finer analysis relating the finite-time and asymptotic optimality of
αX̂ in αX .

One of the equivalent conditions to (A1) of Assumption 2.2 is that a market-growth
process G exists: G is a nonnegative and nondecreasing process such that log(X̂) = G + L
for a local martingale L; furthermore, Assumption (A2) is equivalent to limt→∞ Gt = ∞;
see Theorem A.1. In models using Itô processes, 2G is the integrated squared risk-
premium in the market, see Remark A.2. Our next result implies that one can use G to
control the growth rate of any portfolio.

THEOREM 4.1. Under Assumption 2.2, for any Z ∈ αX we a.s. have that

lim sup
t→∞

(
1

Gt
log(Zt)

)
≤ 1 − α = lim

t→∞

(
1

Gt
log

(
αX̂t
))

.(4.1)

Proof. The fact that limt→∞(log(X̂t)/Gt) = 1 holds on the event {G∞ = ∞} was
established in the proof of Theorem A.1. Again, in view of Theorem A.1, condition (A2)
of Assumption 2.2 is equivalent to P[G∞ = ∞] = 1; therefore, a.s.,

lim
t→∞

(
1

Gt
log(X̂t)

)
= 1.

Observe that by concavity of the function R+ � x �→ x1−α, αX̂ ≥ X̂1−α holds. Combining
this with the above yields, a.s.,

lim inf
t→∞

(
1

Gt
log

(
αX̂t
)) ≥ 1 − α.

On the other hand, since G is nondecreasing and αX̂ achieves maximum values at the
times (τ�)�∈R+ of (3.5), it holds a.s. that

lim supt→∞
(

1
Gt

log
(
αX̂t
)) = lim sup�→∞

(
1

Gτ�

log
(
αX̂τ�

))
= (1 − α) lim sup�→∞

(
�

Gτ�

)
= (1 − α) lim sup�→∞

(
1

Gτ�

log
(
X̂τ�

)) = 1 − α.
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It follows that, a.s.,

lim
t→∞

(
1

Gt
log

(
αX̂t
)) = 1 − α.

Fix Z ∈ αX . The full result of Theorem 4.1 now follows immediately upon noticing
that, a.s.,

lim sup
t→∞

(
1

Gt
log

(
Zt

αX̂t

))
≤ 0,

which is valid in view of the facts that P[G∞ = ∞] = 1 and P[rr∞(Z|αX̂) < ∞] = 1, the
latter following from the inequality Err∞(Z|αX̂) ≤ 0, which was established in Theorem
3.8. �

REMARK 4.2. Fix α ∈ [0, 1). In the setting of Theorem 4.1, any αX ∈ αX such that, a.s.,

lim
t→∞

(
1

Gt
log

(
αXt
αX̂t

))
= 0

also enjoys the asymptotic growth-optimality property in the sense of achieving equality
in (4.1). As a simple example, let X ∈ X , κ ∈ (0, 1) and X̃ := κ X̂ + (1 − κ)X. Then X̃∗ ≥
κ X̂∗ so that α̃X ≥ αα̃X∗ ≥ α(κ X̂∗)1−α = (ακ1−α)αX̂∗ ≥ (ακ1−α)αX̂ and, consequently, α̃X
enjoys the asymptotic growth optimality. In contrast, the asymptotic numéraire property
is much stronger. Combining Theorem 3.8 and Proposition 3.3, it follows that if αX ∈
αX is to have the asymptotic numéraire property, then the much stronger “asymptotic
equivalence” condition limt→∞(αXt/

αX̂t) = 1 has to be a.s. valid. We shall see below that
this in fact implies the even stronger condition αX = αX̂.

4.2. Optimality through Sequences of Stopping Times Converging to Infinity

By Theorem 3.8, Err∞(αX|αX̂) ≤ 0 holds for all X ∈ X , a result which can be
interpreted as long-run numéraire optimality property of αX̂ in αX . However, in effect,
this result assumes that the investment time-horizon is actually equal to infinity. On
both theoretical and practical levels, one may be rather interested in considering a
sequence of stopping times (Tn)n∈N that converge to infinity and examine the behavior
of optimal wealth processes (in the numéraire sense) in the limit. We present two results
in this direction. Proposition 4.3 establishes that the only process in αX possessing the
numéraire property along an increasing sequence of stopping times tending to infinity
is αX̂. The second result, Theorem 4.7, is more delicate than Proposition 4.3, and
may be regarded as a version of so-called turnpike theorems, an appellation coined in
Leland (1972). While the traditional formulation of turnpike theorems involves two
investors with long financial planning horizon and similar preferences for large levels of
wealth, Theorem 4.7 compares a portfolio having the numéraire property for a long, but
finite, time-horizon with the corresponding portfolio having the asymptotic numéraire
property. Loosely speaking, Theorem 4.7 states that, when the time-horizon T is long,
the process α̃X that has the numéraire property in αX for investment over the interval
[0, T] will be very close initially (in time) to αX̂ in a very strong sense.

PROPOSITION 4.3. Under the validity of Assumption 2.2, suppose that there exist X ∈ X
and a sequence of (possibly infinite-valued) stopping times (Tn)n∈N with limn→∞ P[Tn >

t] = 1 holding for all t ∈ R+, such that lim infn→∞ ErrTn (αX̂|αX) ≤ 0. Then, αX = αX̂.
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Proof. Upon passing to a subsequence of (Tn)n∈N if necessary, we may assume without
loss of generality that P[limn→∞ Tn = ∞] = 1. Then, by Theorem 3.8, limt→∞(αX̂t/

αXt)
exists a.s. in (0, ∞] and a use of Fatou’s lemma gives

E

[
lim

t→∞

(
αX̂t
αXt

)]
= E

[
lim inf

n→∞

(
αX̂Tn

αXTn

)]
≤ lim inf

n→∞

(
E

[
αX̂Tn

αXTn

])
= 1 + lim inf

n→∞ ErrTn (αX̂|αX) ≤ 1.

Since we have both E[limt→∞(αX̂t/
αXt)] ≤ 1 and E[limt→∞(αXt/

αX̂t)] ≤ 1 holding,
Jensen’s inequality implies that limt→∞(αXt/

αX̂t) = 1 a.s. holds. By Theorem 3.8,
limt→∞(Xt/X̂t) = 1 a.s. holds. This fact, combined with the conditional form of Fatou’s
lemma and the supermartingale property of X/X̂ gives Xt/X̂t ≥ 1 a.s. for each t ∈ R+.
Combined with E[Xt/X̂t] ≤ 1, this gives X̂t = Xt a.s. for all t ∈ R+. The path-continuity
of the process X/X̂ implies that X = X̂, i.e., that αX = αX̂. �

REMARK 4.4. Following the same reasoning as in the proof of Proposition 4.3, one
can also show that if τ is a time of maximum of X̂ and Errτ (αX̂|αX) ≤ 0 holds for some
X ∈ X , then αX = αX̂ holds identically on the stochastic interval [0, τ ].

In order to state Theorem 4.7, we define a strong notion of convergence in the space
of semimartingales, introduced in Emery (1979).

DEFINITION 4.5. For a stopping time T, say that a sequence (ξ n)n∈N of semimartingales
converges over [0, T] in the Emery topology to another semimartingale ξ , and write
ST- limn→∞ ξ n = ξ , if

lim
n→∞ sup

η∈P1

P

[
sup

t∈[0,T]

∣∣∣∣η0(ξ n
0 − ξ0) +

∫ t

0
ηsdξ n

s −
∫ t

0
ηsdξs

∣∣∣∣ > ε

]
= 0(4.2)

holds for all ε > 0, where P1 denotes the set of all predictable processes η with
supt∈R+ |ηt| ≤ 1. Furthermore, we say that the sequence (ξ n)n∈N of semimartingales
converges locally in the Emery topology to another semimartingale ξ , and write
Sloc- limn→∞ ξ n = ξ , if ST- limn→∞ ξ n = ξ holds for all a.s. finitely valued stopping
times T.

REMARK 4.6. In the setting of Definition 4.5, assume that (ξ n)n∈N converges locally in
the Emery topology to ξ . By taking η ≡ 1 in (4.2), we see that

lim
n→∞ P

[
sup

t∈[0,T]

∣∣ξ n
t − ξt

∣∣ > ε

]
= 0

holds for all ε > 0 and all a.s. finitely valued stopping times T. In other words, the
sequence (ξ n)n∈N converges in probability, uniformly on compacts, to ξ .

THEOREM 4.7. Suppose that (Tn)n∈N is a sequence of stopping times such that
limn→∞ P[Tn > t] = 1 holds for all t ∈ R+. For each n ∈ N, let α̃Xn ∈ αX have the numéraire
property in αX for investment over the period [0, Tn ]. Under Assumption 2.2, it holds that
Sloc- limn→∞ α̃Xn = αX̂.

The proof of Theorem 4.7 is given in Subsection A.5 of Appendix A.

REMARK 4.8. In the setting of Theorem 4.7, the fact thatSloc- limn→∞ α̃Xn = αX̂ implies
by proposition 2.9 in Kardaras (2013) that limn→∞ P[ [α̃Xn − αX̂, α̃Xn − αX̂]T > ε] = 0
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holds for all a.s. finitely valued stopping times T and ε > 0. Writing αX̂ = 1 + ∫ ·
0(α̂Ht, dSt)

and α̃Xn = 1 + ∫ ·
0(α̃Hn

t , dSt) for all n ∈ N for appropriate d-dimensional strategies α̂H and
(α̃Hn)n∈N, we obtain

lim
n→∞ P

[∫ T

0

(
α̃Hn

t − α̂Ht, d [S, S]t
(
α̃Hn

t − α̂Ht
))

> ε

]
= 0

for all a.s. finitely valued stopping times T and ε > 0. The previous relation implies that
it is not only wealth that converges to the limiting one in each finite time-interval—the
corresponding employed strategy does so as well.

REMARK 4.9. In the setting of Theorem 4.7, the conclusion is that convergence of α̃Xn

to αX̂ holds over finite time-intervals that do not depend on n ∈ N. One can ask whether
the whole wealth process α̃Xn is close to αX̂ over the stochastic interval [0, Tn ] for each
n ∈ N. This is not true in general; in Appendix B we present an example, valid under all
models for which Assumption 2.2 holds, where the ratio α̃Xn

Tn
/αX̂Tn as n → ∞ oscillates

between 1/(2 − α) and ∞. Note that the example only covers cases where α ∈ (0, 1); if
α = 0, α̃Xn = αX̂ always holds for all n ∈ N.

APPENDIX A: TECHNICAL PROOFS

We start by describing in Subsection A.1 several useful equivalent formulations of As-
sumption 2.2. Thereafter, through the course of Appendix A, the validity of Assumption
2.2 is always in force. The only exception is Subsection A.3, where only the condition
(A1) of Assumption 2.2 is required.

A.1. Equivalent Conditions to Assumption 2.2.

Recall the market specification in Section 2.1. For i ∈ {1, . . . , d} write Si = Si
0 + Bi +

Mi for the Doob–Meyer decomposition of Si into a continuous finite variation process Bi

with Bi
0 = 0 and a local martingale Mi with Mi

0 = 0. For i ∈ {1, . . . , d} and j ∈ {1, . . . , d},
[Si , Sj ] = [Mi , Mj ] denotes the covariation process of Si and Sj .

The following result follows theorem 4 of Kardaras (2010a) and contains useful equiv-
alent conditions to the ones presented in Assumption 2.2.

THEOREM A.1. Condition (A1) of Assumption 2.2 is equivalent to any of the following:

(B1) There exists X̂ ∈ X such that X/X̂ is a (nonnegative) local martingale for all
X ∈ X .

(C1) There exists a d-dimensional process ρ such that Bi = ∫ ·
0

∑d
j=1 ρ

j
t d[Sj , Si ]t holds

for each i ∈ {1, . . . , d}. Furthermore, the nonnegative and nondecreasing process

G := 1
2

∫ ·

0
(ρt, d[S, S]tρt) ≡ 1

2

∫ ·

0

d∑
i=1

d∑
j=1

ρi
t ρ

j
t d[Sj , Si ]t(A.1)

is such that P[GT < ∞] = 1 holds for all T ∈ R+.
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Under the validity of any of (A1), (B1), (C1), and with the above notation, it holds that

log(X̂) = G + L, where L :=
∫ ·

0

d∑
i=1

ρi
t dMi

t .(A.2)

Furthermore, under the validity of any of the equivalent (A1), (B1), (C1), condition
(A2) of Assumption 2.2 is equivalent to any of the following:

(B2) P[limt→∞ X̂t = ∞] = 1.

(C2) P[G∞ = ∞] = 1, where G∞ := ↑ limt→∞ Gt.

Proof. The fact that the three conditions (A1), (B1), and (C1) are equivalent, as well
as the validity of (A.2), can be found in Kardaras (2010a, theorem 4). Now, assume
any of the equivalent conditions (A1), (B1), or (C1). Clearly, (B2) implies (A2). On
the other hand, suppose that there exists X ∈ X such that P[limt→∞ Xt = ∞] = 1. The
nonnegative supermartingale convergence theorem implies that limt→∞(Xt/X̂t) P-a.s.
exists in R+, which implies that P[limt→∞ X̂t = ∞] = 1 holds as well. Therefore, (A2)
implies (B2). Continuing, note that (A.2) implies that

[L, L] =
∫ ·

0
(ρt, d[M, M]tρt) =

∫ ·

0
(ρt, d[S, S]tρt) = 2G.

In view of the celebrated result of Dambis, Dubins, and Schwarz—see theorem 3.4.6
in Karatzas and Shreve (1991)—there exists a standard Brownian motion β (in a po-
tentially enlarged probability space, and the Brownian motion property of β is with
respect to its own natural filtration) such that Lt = β2Gt holds for t ∈ R+. It follows that
log(X̂t) = Gt + β2Gt holds for t ∈ R+. Therefore, on {G∞ < ∞}, limt→∞ X̂t a.s. exists
and is R+-valued. On the other hand, the strong law of large numbers for Brownian
motion implies that on {G∞ = ∞}, limt→∞(log(X̂t)/Gt) = 1 a.s. holds, which in turn
implies that limt→∞ X̂t = ∞ a.s. holds. The previous facts imply the a.s. set-equality
{G∞ = ∞} = {limt→∞ X̂t = ∞}, which establishes the equivalence of conditions (B2)
and (C2) and completes the proof. �

REMARK A.2. In Itô processes models, it holds that Bi = ∫ ·
0 Si

t bi
tdt and Mi =∫ ·

0 Si
t
∑m

j=1 σ
i j
t dWj

t for i ∈ {1, . . . , d}, where b = (b1, . . . , bd ) is the predictable d-
dimensional vector of excess rates of return, (W1, . . . , Wm) is an m-dimensional standard
Brownian motion, and we write c = σσ� for the predictable d × d matrix-valued process
of local covariances. According to Theorem A.1, condition (A1) of Assumption 2.2 is
equivalent to the fact that there exists a d-dimensional process ρ such that cρ = b, in
which case we write ρ = c†b where c† is the Moore–Penrose pseudo-inverse of c, and that
G := (1/2)

∫ ·
0(bt, c†t bt)dt = (1/2)

∫ ·
0(ρt, ctρt)dt is an a.s. finitely valued process. Observe

that the process G is half of the integrated squared risk-premium in the market.

A.2. Proof of Proposition 2.6.

Since αX̂/αX̂∗ = α + (1 − α)(X̂/X̂∗) holds in view of (2.4), we only need to establish that
0 = lim inf t→∞(X̂t/X̂∗

t ) < lim supt→∞(X̂t/X̂∗
t ) = 1. The fact that lim supt→∞(X̂t/X̂∗

t ) =
1 follows directly from limt→∞ X̂t = ∞. On the other hand, the fact that
lim inf t→∞(X̂t/X̂∗

t ) = 0 follows immediately from the next result (which is stated
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separately as it is also used on another occasion) and the martingale version of the
Borel–Cantelli lemma.

LEMMA A.3. Let σ be a stopping time with P[σ < ∞] = 1. For α ∈ (0, 1) define the
stopping time T := inf{t ∈ (σ, ∞) | X̂t/X̂∗

t ≤ α}. Then P[T < ∞] = 1.

Proof. Recall that limt→∞ X̂t = ∞ holds by Theorem A.1. Using the result of Dambis,
Dubins and Schwarz—theorem 3.4.6 in Karatzas and Shreve (1991)—and a time-change
argument, (A.2) implies that we can assume without loss of generality that X̂ satisfies
X̂t = exp(t/2 + βt) for t ∈ R+, where β is a standard Brownian motion. Furthermore,
using again the fact that limt→∞ X̂t = ∞, we may assume without loss of generality that
σ is a time of maximum of X̂. Then, the independent increments property of Brownian
motion implies that we can additionally assume without loss of generality that σ = 0.
Set σ0 = 0 and, via induction, for each n ∈ N set

σn := inf
{
t ∈ (σn−1, ∞) | X̂t = eX̂σn−1

}
, and Tn = inf

{
t ∈ (σn−1, ∞) | X̂t/X̂∗

t = α
}
.

With T = T1, we wish to show that P[T < ∞] = 1. For each n ∈ N, define the event
An := {Tn < σn}. Note that P[An | Fσn−1 ] = P[A1] holds for all n ∈ N in view of the
regenerating property of Brownian motion and the fact that each σn−1, n ∈ N, is a time of
maximum of X̂. Since lim supn→∞ An ⊆ {T < ∞}, the martingale version of the Borel–
Cantelli lemma implies that P[T < ∞] = 1 will be established as long as we can show
that P[T1 < σ1] = P[A1] > 0.

Since
∫∞

0 I{X̂t<X̂∗
t }dX̂∗

t = 0 a.s. holds, Itô’s formula implies that

X̂∗

X̂
= 1 +

∫ ·

0
X̂∗

t d
(

1

X̂t

)
+ log(X̂∗).

Both processes X̂∗/X̂ and log(X̂∗) are bounded on the stochastic interval [0, σ1 ∧ T1]—
therefore, since P[σ1 < ∞] = 1 and

∫ ·
0 X̂∗

t d(1/X̂t) is a local martingale (by Assumption
2.2 and the fact that 1 ∈ X ), a localization argument gives

P [σ1 ≤ T1] + 1
α

P [T1 < σ1] = E

[
X̂∗

σ1∧T1

X̂σ1∧T1

]
= 1 + E

[
log

(
X̂∗

σ1∧T1

)] ≥ 1 + P [σ1 ≤ T1] ,

which gives P[T1 < σ1] ≥ α > 0 and completes the proof of Lemma A.3. �

A.3. Proof of Theorem 3.5.

For the purposes of Subsection A.3, only condition (A1) of Assumption 2.2 is in force.
Fix an a.s. finitely valued stopping time T throughout. As the result of Theorem 3.5 for
the case α = 0 is known, we tacitly assume that α ∈ (0, 1) throughout.

A.3.1. Existence. We shall first prove existence of a process with the numéraire property
in αX for investment over the period [0, T]. As T is a.s. finitely valued, without loss of
generality we shall assume that all processes that appear below are constant after time T,
and their value after time T is equal to their value at time T. In particular, the limiting
value of a process for time tending to infinity exists and is equal to its value at time T.

Define X ◦ as the class of all nonnegative càdlàg processes Y with Y0 ≤ 1 and with the
property that YX is a supermartingale for all X ∈ X . Note that (1/X̂) ∈ X ◦. In a similar
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way, define X ◦◦ as the class of all nonnegative càdlàg processes χ with χ0 ≤ 1 and with
the property that Yχ is a supermartingale for all Y ∈ X ◦. It is clear that X ⊆ X ◦◦. The
next result reveals the exact structure of X ◦◦.

THEOREM A.4 (Optional Decomposition Theorem of Föllmer and Kramkov 1997,
Stricker and Yan 1998). The class X ◦◦ consists exactly of all processes χ of the form
χ = X(1 − A), where X ∈ X and A is an adapted, nonnegative and nondecreasing càdlàg
process with 0 ≤ A ≤ 1.

The result that follows enables one to construct a process that will be a candidate to
have the numéraire property in αX for investment over the interval [0, T].

LEMMA A.5. For any α ∈ [0, 1) and t ∈ [0, ∞], the set {Zt | Z ∈ αX } is convex and
bounded in P-measure, the latter meaning that limK→∞ supZ∈αX P[Zt > K ] = 0.

Proof. Fix α ∈ [0, 1). Let λ ∈ [0, 1] and pick processes X ∈ X and X′ ∈ X . Since X is
convex, ((1 − λ)αX + λαX′) ∈ X . Furthermore, since

α((1 − λ)αX + λαX′)∗ ≤ (1 − λ)ααX∗ + λα(αX′)∗ ≤ α((1 − λ)αX + λαX′),

we obtain ((1 − λ)αX + λαX′) ∈ αX , which shows that αX is convex for all α ∈ [0, 1).
Furthermore, it holds that supX∈X E[X∞/X̂∞] ≤ 1 and, using Markov’s inequality,

we see that {X∞/X̂∞ | X ∈ X } is bounded in P-measure. Since P[X̂∞ > 0] = 1, the
set {X∞ | X ∈ X } is bounded in P-measure; the same is then true for {αXt | X ∈ X } ⊆
{Xt | X ∈ X } ⊆ {X∞ | X ∈ X } for any value of t ∈ [0, ∞]. �

In the sequel, fix α ∈ (0, 1). In view of Lemma A.5 and theorem 1.1(4) in Kardaras
(2010b), there exists a random variable χ̌∞ in the closure in P-measure of {X∞ | X ∈ αX }
such that E[X∞/χ̌∞] ≤ 1 holds for all X ∈ αX . Define the countable set T = {k/2m | k ∈
N, m ∈ N}. A repeated application of lemma A1.1 in Delbaen and Schachermayer (1994)
combined with Lemma A.5 and a diagonalization argument implies that one can find
an αX -valued sequence (Xn)n∈N such that χ̌∞ = limn→∞ Xn

∞ and limn→∞ Xn
t a.s. exists

simultaneously for all t ∈ T. Define then χ̌t = limn→∞ Xn
t for all t ∈ T. Since T is a.s.

finitely valued and all processes are constant after T, it is straightforward that χ̌∞ =
limt→∞ χ̌t a.s.

Since E[Yt Xn
t | Fs ] ≤ Ys Xn

s holds for all n ∈ N, Y ∈ X ◦, t ∈ T and s ∈ T ∩ [0, t], the
conditional version of Fatou’s lemma gives that E[Ytχ̌t | Fs ] ≤ Ys χ̌s holds for all Y ∈
X ◦, t ∈ T and s ∈ T ∩ [0, t]. In particular, with Ŷ := 1/X̂ ∈ X ◦, the process (Ŷtχ̌t)t∈T

is a supermartingale in the corresponding stochastic basis with time-index T. Since
P[infs∈[0,t] Ŷs > 0] = 1 holds for all t ∈ R+, the supermartingale convergence theorem
implies that there exists a nonnegative càdlàg process χ such that3 χs = limT�t↓↓s χ̌t

holds for all s ∈ R+. (The notation “limT�t↓↓s” denotes limit along times t ∈ T that are
strictly greater than s ∈ R+ and converge to s.) The fact that E[Ytχ̌t | Fs ] ≤ Ys χ̌s holds
for all Y ∈ X ◦, t ∈ T and s ∈ T ∩ [0, t], right-continuity of the filtration (Ft)t∈R+ and the
conditional version of Fatou’s lemma give that E[Ytχt | Fs ] ≤ Ysχs holds for all Y ∈ X ◦,
t ∈ R+ and s ∈ [0, t]. Therefore, χ ∈ X ◦◦. Of course, χ∞ = χ̌∞ = limt→∞ χt a.s. holds.
In view of Theorem A.4, it holds that χ = X̃(1 − A), where X̃ ∈ X and A is an adapted,
nonnegative and nondecreasing càdlàg process with 0 ≤ A ≤ 1. Furthermore, note that
E[X∞/χ∞] ≤ 1 holds for all X ∈ αX.

3Note that χ is indeed the limit of (Xn)n∈N in the “Fatou” sense. Fatou-convergence has proved to be
extremely useful in the theory of Mathematical Finance; for example, see Föllmer and Kramkov (1997),
Kramkov and Schachermayer (1999), and Žitković (2002).
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Continuing, we shall show that A ≡ 0 and χ (= X̃) ∈ αX . If (Xn)n∈N is the αX -valued
sequence such that χ̌t = limn→∞ Xn

t holds a.s. simultaneously for all t ∈ T, we have that
Xn

t ≥ αXn
s a.s. holds for all t ∈ T and s ∈ T ∩ [0, t]. By passing to the limit, and using

the fact that T is countable, we obtain that χ̌t ≥ αχ̌s holds a.s. simultaneously for all
t ∈ T and s ∈ T ∩ [0, t]. Therefore, χt ≥ αχs holds a.s. simultaneously for all t ∈ R+ and
s ∈ [0, t]. Then,

X̃t = χt

1 − At
≥ χt

1 − As
≥ α

χs

1 − As
= α X̃s

holds a.s. simultaneously for all t ∈ R+ and s ∈ [0, t]. It follows that X̃ ∈ αX . This im-
plies, in particular, that E[X̃∞/χ∞] ≤ 1 has to hold. Since X̃∞/χ∞ = 1/(1 − A∞) ≥ 1,
we obtain P[A∞ = 0] = 1, i.e., A ≡ 0. Therefore, χ = X̃ and E[X∞/X̃∞] ≤ 1 holds for
all X ∈ αX, which concludes the proof of existence of a wealth process that possesses the
numéraire property in αX for investment over [0, T].

A.3.2. Uniqueness. We proceed in establishing uniqueness of a process with the
numéraire property in αX for investment over the period [0, T]. We start by stating
and proving a result that will be used again later.

LEMMA A.6. Let Z ∈ αX, and let σ be a stopping time such that Zσ = Z∗
σ a.s. holds

on {σ < ∞}. Fix X ∈ αX and A ∈ Fσ and define a new process4 ξ := ZI[[0,σ [[ + (ZI�\A +
(Zσ /Xσ )X IA)I[[σ,∞[[. Then, ξ ∈ αX .

Proof. It is straightforward to check that ξ ∈ X . To see that ξ ∈ αX , note that ξ/ξ ∗ =
Z/Z∗ ≥ α holds on [[0, σ [[ ∪ ([[σ, ∞[[∩(� \ A)), while, using the fact that ξ ∗

σ = Z∗
σ = Zσ

holds a.s.on {σ < ∞},

ξ

ξ ∗ = X
supt∈[σ,·] Xt

≥ X
X∗ ≥ α, holds on [[σ,∞[[∩A.

The result immediately follows. �

REMARK A.7. As can be seen via the use of simple counterexamples, if one drops
the assumption that σ is a time of maximum of Z in the statement of Lemma A.6, the
resulting process ξ may fail to satisfy the drawdown constraints. This is in direct contrast
with the nonconstrained case α = 0, where any stopping time σ will result in ξ being an
element of X . It is exactly this fact, a consequence of the path-dependent structure of
the drawdown constraints, which results in portfolios with the numéraire property that
depend on the investment horizon.

LEMMA A.8. Let Z ∈ αX be such that ErrT(X|Z) ≤ 0 holds for all X ∈ αX, and suppose
that σ is a stopping time such that Zσ = Z∗

σ a.s. holds on {σ < ∞}. Then,

E

[
XT

ZT

∣∣∣ FT∧σ

]
≤ XT∧σ

ZT∧σ

holds a.s. for all X ∈ αX .

4Note that, since we tacitly assume that α ∈ (0, 1), Xσ > 0 a.s. holds on {σ < ∞}. Therefore, the process
ξ is well defined.
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Proof. Fix X ∈ αX and A ∈ Fσ . Define the process ξ := ZI[[0,σ [[ + (Z I�\A +
(Zσ /Xσ )X IA)I[[σ,∞[[; by Lemma A.6, ξ ∈ αX . Furthermore, it is straightforward to check
that

ξT

ZT
= I�\(A∩{σ≤T}) +

(
XT

ZT

Zσ

Xσ

)
IA∩{σ≤T}.

Therefore, the fact that ErrT(ξ |Z) ≤ 0 holds implies

E

[
XT

ZT

Zσ

Xσ

IA∩{σ≤T}

]
≤ P[A∩ {σ ≤ T}].

As the previous is true for all A ∈ Fσ , we obtain that E[XT/ZT | Fσ ] ≤ Xσ /Zσ holds
a.s. on {σ ≤ T} for all X ∈ αX . Combined with the fact that E[XT/ZT | FT] = XT/ZT

trivially holds a.s. on {σ > T} for all X ∈ αX , we obtain the result. �

We now proceed to the actual proof of uniqueness. Assume that both Z̃ ∈ αX and
X̃ ∈ αX have the numéraire property in αX for investment over [0, T]. Since P[T < ∞] = 1,
Proposition 3.3 implies that P[X̃T = Z̃T] = 1. We shall show below that Z̃ ≤ X̃ holds on
[0, T]. Interchanging the roles of X̃ and Z̃, it will also follow that X̃ ≤ Z̃ holds on [0, T],
which will establish that X̃ = Z̃ holds on [0, T] and will complete the proof of Theorem
3.5.

Since P[X̃T = Z̃T] = 1 and ErrT(X|Z̃) ≤ 0 holds for all X ∈ αX , Lemma A.8 implies
that 1 = E[X̃T/Z̃T | FT∧σ ] ≤ X̃T∧σ /Z̃T∧σ a.s. holds whenever σ is a stopping time such
that Z̃σ = Z̃∗

σ a.s. holds on {σ < ∞}. The fact that Z̃T∧σ ≤ X̃T∧σ a.s. holds whenever σ

is a stopping time such that Z̃σ = Z̃∗
σ a.s. holds on {σ < ∞} implies in a straightforward

way that Z̃∗ ≤ X̃∗ holds on [0, T].
We now claim that P[Z̃T = X̃T] = 1 combined with Z̃∗ ≤ X̃∗ holding on [0, T] imply

that Z̃ ≤ X̃ on [0, T], which will complete the proof. To see the last claim, for ε > 0 define
the stopping time

Tε := inf
{
t ∈ R+ | Z̃t > (1 + ε)X̃t

}
.

We shall show that P[Tε < T] = 0; as this will hold for all ε > 0, it will follow that Z̃ ≤ X̃
holds on [0, T]. Define a new process X̃ε via

X̃ε = Z̃I[[0,Tε [[ +
(

Z̃Tε

X̃Tε

)
X̃ I[[Tε ,∞[[ = Z̃I[[0,Tε [[ + (1 + ε) X̃ I[[Tε ,∞[[.

We first show that X̃ε ∈ αX . The fact that X̃ ∈ X is obvious. Note also that X̃ε ≥ α(X̃ε)∗

clearly holds on [[0, Tε [[, since Z̃ ∈ αX. On the other hand,

(X̃ε)∗t = (Z̃Tε )∗ ∨ sup
s∈[Tε ,t]

(
(1 + ε)X̃t

) ≤ (1 + ε)X̃∗
t holds for t ≥ Tε,

the latter inequality holding in view of the fact that Z̃∗ ≤ X̃∗. Therefore, for t ≥ Tε

it holds that X̃ε
t = (1 + ε)X̃t ≥ (1 + ε)α X̃∗

t ≥ α(X̃ε)∗t . It follows that X̃ε ≥ α(X̃ε)∗ also
holds on [[Tε, ∞[[, which shows that X̃ε ∈ αX . Note that

X̃ε
T = Z̃TI{T<Tε } + (1 + ε)X̃TI{Tε≤T} = X̃TI{T<Tε } + (1 + ε)X̃TI{Tε≤T},

which implies that X̃ε
T/X̃T = 1 + εI{Tε≤T} and, as a consequence, ErrT(X̃ε |X̃) = εP[Tε ≤

T]. In case P [Tε ≤ T] > 0, it would follow that X̃ fails to have the numéraire property in
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αX for investment in [0, T]. Therefore, P [Tε ≤ T] = 0, which implies that Z̃ ≤ X̃ holds
on [0, T], as already mentioned. The proof of Theorem 3.5 is complete.

A.4. Proof of Theorem 3.8.

The main tool toward proving assertion (1) of Theorem 3.8 is the following auxiliary
result.

LEMMA A.9. For any X ∈ X , limt→∞(X∗
t /X̂∗

t ) a.s. exists. Moreover, it a.s. holds that

lim
t→∞

(
X∗

t

X̂∗
t

)
= lim

t→∞

(
Xt

X̂t

)
.

Proof. For t ∈ R+, define the [0, t]-valued random time ρ̂t := sup{s ∈ [0, t] | X̂s =
X̂∗

s }; then, X̂∗
t = X̂ρ̂t . Note that P [↑ limt→∞ ρ̂t = ∞] = 1 holds in view of Assumption

2.2. It follows that, for any X ∈ X , it a.s. holds that

lim inf
t→∞

(
X∗

t

X̂∗
t

)
= lim inf

t→∞

(
X∗

t

X̂∗
ρ̂t

)
≥ lim inf

t→∞

(
Xρ̂t

X̂ρ̂t

)
= lim

t→∞

(
Xt

X̂t

)
.(A.3)

In what follows, fix X ∈ X . For t ∈ R+ define ρt := sup{s ∈ [0, t] | Xs = X∗
s }, which

is a [0, t]-valued random time. For each t ∈ R+, X∗
t = Xρt . Note that the set-inclusions

{↑ limt→∞ ρt < ∞} ⊆ {supt∈R+ Xt < ∞} ⊆ {rr∞(X|X̂) = −1} are valid a.s., the last in
view of Assumption 2.2. Therefore,

lim
t→∞

(
Xt

X̂t

)
= lim

t→∞

(
X∗

t

X̂∗
t

)
= 0 holds on

{
lim

t→∞ ρt < ∞
}

.(A.4)

Furthermore,

lim sup
t→∞

(
X∗

t

X̂∗
t

)
= lim sup

t→∞

(X∗
ρt

X̂∗
t

)
≤ lim sup

t→∞

(
Xρt

X̂ρt

)
= lim

t→∞

(
Xt

X̂t

)
holds on

{
lim

t→∞ ρt = ∞
}

.(A.5)

The claim now readily follows from (A.3), (A.4), and (A.5). �

Proof of Theorem 3.8 , statement (1) In the sequel, fix X ∈ X and assume that α ∈ (0, 1).
Results for the case α = 0 are well understood and not discussed.

To ease notation, let D := X/X∗ and D̂ := X̂/X̂∗. The process D is [0, 1]-valued and
D̂ is (0, 1]-valued. Observe that

αX
αX̂

= α(X∗)1−α + α(X∗)−α X
α(X̂∗)1−α + α(X̂∗)−α X̂

=
(

X∗

X̂∗

)1−α (
α + (1 − α)D
α + (1 − α)D̂

)
.

In view of Lemma A.9, limt→∞(X∗
t /X̂∗

t )1−α = (1 + rr∞(X|X̂))1−α holds. First, the fact
that

α + (1 − α)D
α + (1 − α)D̂

≤ 1
α
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implies that αX/αX̂ ≤ (1/α)(X∗/X̂∗)1−α, which readily gives (3.3) on {rr∞(X|X̂) = −1}.
Furthermore, the facts that 0 ≤ D ≤ 1, 0 < D̂ ≤ 1 and limt→∞(Dt/D̂t) = 1, the latter
holding a.s. on {rr∞(X|X̂) > −1} in view of Lemma A.9, imply that

lim sup
t→∞

∣∣∣∣α + (1 − α)Dt

α + (1 − α)D̂t
− 1

∣∣∣∣ ≤ 1 − α

α
lim sup

t→∞

∣∣Dt − D̂t

∣∣ = 0 holds on
{
rr∞(X|X̂) > −1

}
.

Therefore, limt→∞(αXt/
αX̂t) = (1 + rr∞(X|X̂))1−α also holds on the event {rr∞(X|X̂) > −1},

which completes the proof of statement (1) of Theorem 3.8. �

Proof of Theorem 3.8, statement (2). Let τ be a time of maximum of X̂. Recall the
definition of the stopping times (τ�)�∈R+ from (3.5). In view of statement (1) of Theorem
3.8,

rrτ (αX|αX̂) = lim
�→∞

(
αXτ∧τ�

αX̂τ∧τ�

)
− 1(A.6)

a.s. holds. Now, observe that τ ∧ τ� is a time of maximum of X̂ for each � ∈ R+; therefore,
αX̂τ∧τ�

= (X̂τ∧τ�
)1−α = (X̂∗

τ∧τ�
)1−α. It then follows that

αXτ∧τ�

αX̂τ∧τ�

= α

(
X∗

τ∧τ�

X̂∗
τ∧τ�

)1−α

+ (1 − α)
(

Xτ∧τ�

X̂τ∧τ�

)(
X∗

τ∧τ�

X̂∗
τ∧τ�

)−α

.(A.7)

Define χ := X/X̂ and, in the obvious way, χ∗ := supt∈[0,·](Xt/X̂t). For y ∈ R+, the
function [y, ∞) � z �→ αz1−α + (1 − α)yz−α is nondecreasing, which can be shown upon
simple differentiation. With y = χτ∧τ�

, z1 = X∗
τ∧τ�

/X̂∗
τ∧τ�

= X∗
τ∧τ�

/X̂τ∧τ�
≥ y and z2 =

χ∗
τ∧τ�

≥ X∗
τ∧τ�

/X̂∗
τ∧τ�

= z1, (A.7) then implies that

αXτ∧τ�

αX̂τ∧τ�

≤ α
(
χ∗

τ∧τ�

)1−α + (1 − α)χτ∧τ�

(
χ∗

τ∧τ�

)−α
.

Define the process φ := α (χ∗)1−α + (1 − α)χ (χ∗)−α; then, by the last estimate and
(A.6),

rrτ (αX|αX̂) ≤ lim inf
�→∞

(φτ∧τ�
) − 1.

Since
∫∞

0 I{χt<χ∗
t }dχ∗

t = 0 a.s. holds, a straightforward use of Itô’s formula gives

φ = 1 +
∫ ·

0
(1 − α)

(
χ∗

t

)−α
dχt;

since χ is a local martingale, φ is a local martingale as well. Since φ is nonnegative, it is
a supermartingale with φ0 = 1, which implies that E

[
φτ∧τ�

] ≤ 1 holds for all � ∈ R+. It
follows that

Errτ (αX|αX̂) = E
[
rrτ (αX|αX̂)

] ≤ E

[
lim inf

�→∞
(φτ∧τ�

)
]

− 1 ≤ lim inf
�→∞

(
E
[
φτ∧τ�

])− 1 ≤ 0.

Now, let σ be a time of maximum of X̂ with σ ≤ τ . Fix X ∈ X and A ∈ Fσ ; by Lemma
A.6, the process ξ := αX̂I[[0,σ [[ + (αX̂I�\A + αX̂σ (αX/αXσ ) IA)I[[σ,∞[[ is an element of αX .
Furthermore, it is straightforward to check that

rrτ (ξ |αX̂) =
(

1 + rrτ (αX|αX̂)

1 + rrσ (αX|αX̂)
− 1

)
IA∩{σ<∞}.
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Since Errτ (ξ |αX̂) ≤ 0 has to hold by the result previously established, we obtain

E

[
1 + rrτ

(
αX|αX̂)

1 + rrσ

(
αX|αX̂) IA∩{σ<∞}

]
≤ P[A∩ {σ < ∞}].

Since the previous holds for all A ∈ Fσ , we obtain that E[rrτ (αX|αX̂) | Fσ ] ≤ rrσ (αX|αX̂)
holds on {σ < ∞}. On {σ = ∞}, we have σ = τ and E[rrτ (αX|αX̂) | Fσ ] = rr∞(αX|αX̂) =
rrσ (αX|αX̂). Therefore, E[rrτ (αX|αX̂) | Fσ ] ≤ rrσ (αX|αX̂) holds. �

A.5. Proof of Theorem 4.7.

In the setting of Definition 4.5, consider a sequence (ξ n)n∈N of semimartingales and
another semimartingale ξ . It is straightforward to check that Sloc- limn→∞ ξ n = ξ holds if
and only if there exists a nondecreasing sequence (τk)k∈N of finitely valued stopping times
with P [limk→∞ τk = ∞] = 1 such that Sτk- limn→∞ ξ n = ξ holds for all k ∈ N. For the
proof of Theorem 4.7, we shall use the previous observation along the sequence (τ�)�∈N

of finitely valued stopping times defined in (3.5). Therefore, in the course of the proof,
we keep � ∈ R+ fixed and will show that Sτ�

- limn→∞ α̃Xn = αX̂.
As a first step, we shall show that P- limn→∞ α̃Xn

τ�
= αX̂τ�

, where “P- lim” denotes limit in
probability. For each n ∈ N, consider the process ξ n := αX̂ I[[0,τ�[[ + αX̂τ�

(
α̃Xn/α̃Xn

τ�

)
I[[τ�,∞[[.

By Lemma A.6, ξ n ∈ αX for all n ∈ N. Furthermore, note that

rrTn (ξ n|α̃X) = rrτ�

(
αX̂|α̃Xn)

I{τ�<Tn} + rrTn

(
αX̂|α̃Xn)

I{Tn≤τ�} = rrTn∧τ�

(
αX̂|α̃Xn) .

Using the previous relationship, the assumptions of Theorem 4.7 give ErrTn∧τ�
(αX̂|α̃Xn) ≤

0 for all n ∈ N. Furthermore, by Theorem 3.8, Errτ�
(α̃Xn|αX̂) ≤ 0 holds for all n ∈ N.

Therefore, E[rrTn∧τ�
(αX̂|α̃Xn) + rrτ�

(α̃Xn|αX̂)] ≤ 0 holds for all n ∈ N. Observe that the
equality rrTn∧τ�

(αX̂|α̃Xn) + rrτ�
(α̃Xn|αX̂) = (α̃Xn

τ�
− αX̂τ�

)2/(αX̂τ�

α̃Xn
τ�

) holds on {τ� < Tn}, and
that the inequality rrTn∧τ�

(αX̂|α̃Xn) + rrτ�
(α̃Xn|αX̂) ≥ −2 is always true; therefore,

rrTn∧τ�

(
αX̂|α̃Xn)+ rrτ�

(
α̃Xn|αX̂) ≥

(
α̃Xn

τ�
− αX̂τ�

)2

αX̂τ�
α̃Xn

τ�

I{τ�<Tn} − 2I{Tn≤τ�}.

Since E[rrTn∧τ�
(αX̂|α̃Xn) + rrτ�

(α̃Xn|αX̂)] ≤ 0 holds for all n ∈ N and limn→∞ P [Tn ≤ τ�] = 0
holds in view of Theorem A.1, we obtain that

lim
n→∞ E

[(
α̃Xn

τ�
− αX̂τ�

)2

αX̂τ�
α̃Xn

τ�

I{τ�<Tn}

]
= 0.

Using again the fact that limn→∞ P [τ� < Tn ] = 1, we obtain that P- limn→∞ α̃Xn
τ�

= αX̂τ�
.

Given P- limn→∞ α̃Xn
τ�

= αX̂τ�
, we now proceed in showing that P- limn→∞(X̃n

τ�
/X̂τ�

) =
1. We use some arguments similar to the first part of the proof of statement (2) of
Theorem 3.8, where the reader is referred to for certain details that are omitted here.
Define χn := X̃n/X̂ and (χn)∗ := supt∈[0,·](X̃n

t /X̂t). It then follows that

α̃Xn
τ�

αX̂τ�

≤ α
(
(χn)∗τ�

)1−α + (1 − α)χn
τ�

(
(χn)∗τ�

)−α =: φn
τ�
,(A.8)
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where the process φn := α ((χn)∗)1−α + (1 − α)χn ((χn)∗)−α is a nonnega-
tive local martingale for each n ∈ N. We claim that P- limn→∞ φn

τ�
= 1. To

see this, first observe that P- lim infn→∞ φn
τ�

≥ 1 holds, in the sense that
lim infn→∞ P[φn

τ�
> 1 − ε] ≥ lim infn→∞ P[α̃Xn

τ�
/αX̂n

τ�
> 1 − ε] = 1 holds for all

ε ∈ (0, 1). Then, given that P- lim infn→∞ φn
τ�

≥ 1, if lim supn→∞ P [φn
τ�

> 1 + ε] > 0 was
true, one would conclude that lim supn→∞ E[φn

τ�
] > 1, which contradicts the fact that E

phin
τ�

] ≤ φn
0 = 1 holds for all n ∈ N. Therefore, lim supn→∞ P[φn

τ�
> 1 + ε ] = 0 holds

for all ε ∈ (0, 1), which combined with P- lim infn→∞ φn
τ�

≥ 1 gives P- limn→∞ φn
τ�

= 1.
To recapitulate, the setting is the following: (φn)n∈N is a sequence of nonnegative
local martingales with φn

0 = 1, and P- limn→∞ φn
τ�

= 1 holds. In that case, lemma
2.11 in Kardaras (2013) implies that P- limn→∞(φn)∗τ�

= 1 holds as well. Note that
(φn)∗ = ((χn)∗)1−α, so that P- limn→∞(χn)∗τ�

= 1 holds as well. Then, the bounds in (A.8)
imply that P- limn→∞ χn

τ�
= 1.

Once again, we are in the following setting: (χn)n∈N is a sequence of nonnegative local
martingales with χn

0 = 1, and P- limn→∞ χn
τ�

= 1 holds. An application of proposition
2.7 and lemma 2.12 in Kardaras (2013) gives that Sτ�

- limn→∞ χn = 1, which also im-
plies that Sτ�

- limn→∞ X̃n = X̂ by proposition 2.10 in Kardaras (2013). This implies that
limn→∞ P[supt∈[0,τ�] |(X̃n)∗t − X̂∗

t | > ε] = 0 also holds for all ε > 0 by Remark 4.6. There-
fore, by (2.3) and lemma 2.9 in Kardaras (2013), we obtain that Sτ�

- limn→∞ α̃Xn = αX̂,
which completes the proof of Theorem 4.7.

APPENDIX B: A CAUTIONARY NOTE REGARDING THEOREM 4.7

In this section, we elaborate on the point that is made in Remark 4.9 via use of an
example. In the discussion that follows, fix α ∈ (0, 1). The model is the general one
described in Subsection 2.1, and Assumption 2.2 is always in force.

Let T1/2 = 0 and, using induction, for n ∈ N define

Tn := inf
{
t ∈ (Tn−1/2, ∞

) | X̂t = α X̂∗
t

}
, Tn+1/2 := inf

{
t ∈ (Tn, ∞) | X̂t = X̂∗

Tn

}
.

(The stopping times T and τ defined in the proof of Proposition 3.13 are exactly the
stopping times T1 and T3/2 defined above.) Note the following: Tn−1/2 is a time of maximum
of X̂ for all n ∈ N, (Tk/2)k∈N is an increasing sequence, and P [limn→∞ Tn = ∞] = 1 holds.
Under Assumption 2.2, Lemma A.3 implies that P [Tn < ∞] = 1 for all n ∈ N.

For each n ∈ N, one can explicitly describe the wealth process α̃Xn that has the
numéraire property in the class αX for investment over the interval [0, Tn ]. In words,
α̃Xn will follow αX̂ until time Tn−1/2, then switch to investing like the numéraire portfolio
X̂ up to time Tn and, since at time Tn one hits the hard drawdown constraint, α̃Xn will
remain constant from Tn onward. In mathematical terms, define

α̃Xn : = αX̂ I[[0,Tn−1/2[[ +
(

αX̂Tn−1/2

X̂Tn−1/2

)
X̂ I[[Tn−1/2,Tn [[ +

(
αX̂Tn−1/2

X̂Tn−1/2

)
X̂Tn I[[Tn ,∞[[

= αX̂ I[[0,Tn−1/2[[ + (
X̂Tn−1/2

)−α X̂ I[[Tn−1/2,Tn [[ + (
X̂Tn−1/2

)−α
α X̂∗

Tn
I[[Tn ,∞[[,

where for the equality in the second line the facts that αX̂Tn−1/2 = (X̂Tn−1/2 )1−α and X̂Tn =
α X̂∗

Tn
were used. It is straightforward to check that α̃X ∈ αX , in view of the definition of
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the stopping times (Tk/2)k∈N. Pick any X ∈ X . The global (in time) numéraire property
of X̂ in X will give

E

[
αXTn

α̃Xn
Tn

− 1

∣∣∣∣FTn−1/2

]
≤

αXTn−1/2

α̃Xn
Tn−1/2

− 1 =
αXTn−1/2

αX̂n
Tn−1/2

− 1.

Upon taking expectation on both sides of the previous inequality, we obtain
ErrTn (αX|α̃Xn) ≤ ErrTn−1/2 (αX|αX̂n

) ≤ 0, the last inequality holding in view of statement
(2) of Theorem 3.8, given that Tn−1/2 is a time of maximum of X̂. We have shown that α̃Xn

indeed has the numéraire property in the class αX for investment over the interval [0, Tn ].
Note that α̃Xn = αX̂ identically holds in the stochastic interval [0, Tn−1/2] for each n ∈ N;

therefore, the conclusion of Theorem 4.7 in this case is valid in a quite strong sense.
However, the behavior of α̃Xn and αX̂ in the stochastic interval [Tn−1/2, Tn ] is different and
results in quite diverse outcomes at time Tn , as we shall now show. At time Tn one has

αX̂Tn = α
(
X̂∗

Tn

)1−α + (1 − α)
(
X̂∗

Tn

)−α X̂Tn = α (2 − α)
(
X̂∗

Tn

)1−α
,

where the fact that X̂Tn = α X̂∗
Tn

was again used. Furthermore, α̃Xn
Tn

= (X̂Tn−1/2 )−αα X̂∗
Tn

. It
then follows that

α̃Xn
Tn

αX̂Tn

=
(
X̂Tn−1/2

)−α
α X̂∗

Tn

α (2 − α)
(
X̂∗

Tn

)1−α
= 1

2 − α

(
X̂∗

Tn

X̂Tn−1/2

)α

=: ζn .

In view of Assumption 2.2 and the result of Dambis, Dubins, and Schwarz—see theorem
3.4.6 in Karatzas and Shreve (1991)—the law of the random variable ζn is the same for all
n ∈ N. In fact, universal distributional properties of the maximum of a nonnegative local
martingale stopped at first hitting time—see proposition 4.3 in Carraro et al. (2012)—
imply that ζn = (2 − α)−1(α + (1 − α) (1/ηn))α, where ηn has the uniform law on (0, 1).
In particular, P[ζn < (2 − α)−1 + ε] > 0 and P[ζn > (2 − α)−1 + ε−1] > 0 holds for all
ε ∈ (0, 1). Furthermore, ζn is FTn -measurable and independent of FTn−1/2 ⊇ FTn−1 for each
n ∈ N, which implies that (ζn)n∈N is a sequence of independent and identically distributed
random variables. By an application of the second Borel–Cantelli lemma, it follows that

1
2 − α

= lim inf
n→∞

(
α̃Xn

Tn

αX̂Tn

)
< lim sup

n→∞

(
α̃Xn

Tn

αX̂Tn

)
= ∞,

demonstrating the claim made at Remark 4.9.

REFERENCES

BACON, C. R. (2008): Practical Portfolio Performance Measurement and Attribution, 2nd edn,
Chichester, UK: Wiley.

BANSAL, R. and B. N. LEHMANN (1997): Growth-Optimal Portfolio Restrictions on Asset Pricing
Models, Macroecon. Dyn. 1(2), 333–354.

BROWNE, S., and R. KOSOWSKI (2010): Drawdown Minimization, in Encyclopedia of Quantitative
Finance, R. Cont, ed., Vol. I, Chichester, UK: Wiley, pp. 495–498.
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NUMÉRAIRE PROPERTY AND LONG-TERM GROWTH WITH DRAWDOWN CONSTRAINTS 95

MARKOWITZ, H. M. (2006): Samuelson and Investment for the Long Run, in Samuelsonian
Economics and the Twenty-First Century, M. Szenberg, L. Ramrattan and A. A. Gottesman,
eds. Oxford: Oxford University Press, pp. 252–261.

MERTON, R. C. (1971): Optimum Consumption and Portfolio Rules in a Continuous-Time
Model, J. Econ. Theory 3, 373–413.
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