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Abstract We study the existence of the numéraire portfolio under predictable convex
constraints in a general semimartingale model of a financial market. The numéraire
portfolio generates a wealth process, with respect to which the relative wealth
processes of all other portfolios are supermartingales. Necessary and sufficient con-
ditions for the existence of the numéraire portfolio are obtained in terms of the triplet
of predictable characteristics of the asset price process. This characterization is then
used to obtain further necessary and sufficient conditions, in terms of a no-free-lunch-
type notion. In particular, the full strength of the “No Free Lunch with Vanishing
Risk” (NFLVR) condition is not needed, only the weaker “No Unbounded Profit with
Bounded Risk” (NUPBR) condition that involves the boundedness in probability of
the terminal values of wealth processes. We show that this notion is the minimal a-
priori assumption required in order to proceed with utility optimization. The fact that
it is expressed entirely in terms of predictable characteristics makes it easy to check,
something that the stronger NFLVR condition lacks.
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1 Introduction

1.1 Background and discussion of results

A broad class of models, that have been used extensively in stochastic finance, are
those for which the price processes of financial instruments are considered to evolve
as semimartingales. The concept of a semimartingale is very intuitive: it connotes
a process that can be decomposed into a finite variation term that represents the
“signal”, and a local martingale term that represents the “noise”. The reasons for
the ubiquitousness of semimartingales in modeling financial asset prices are by now
pretty well understood—see, for example, Delbaen and Schachermayer [10], where
it is shown that restricting ourselves to the realm of locally bounded stock prices and
agreeing that we should banish arbitrage by use of simple “buy-and-hold” strategies,
the price process has to be a semimartingale. Discrete-time models can be embedded
in this class, as can processes with independent increments and many other Markov
processes, such as solutions to stochastic differential equations. Models that are not
encompassed, but have received attention, include price processes driven by frac-
tional Brownian motion.

In this paper we consider a general semimartingale model and make no further
mathematical assumptions. On the economic side, we assume that assets have their
prices determined exogenously and can be traded without “frictions”: transaction
costs are non-existent or negligible. Our main concern will be a problem of dynamic
stochastic optimization: to find a trading strategy whose wealth appears “better” when
compared to the wealth generated by any other strategy, in the sense that the ratio
of the two processes is a supermartingale. If such a strategy exists, it is essentially
unique and is called numéraire portfolio. Necessary and sufficient conditions for the
numéraire portfolio to exist are derived, in terms of the triplet of predictable charac-
teristics of the stock-price returns.

Sufficient conditions for the existence of the numéraire portfolio are established
in [18], who focus on the (almost equivalent) problem of maximizing expected loga-
rithmic utility. These authors show that their conditions are also necessary, under the
following assumptions: the problem of maximizing the expected log-utility from ter-
minal wealth has a finite value, no constraints are enforced on strategies, and NFLVR
holds. Becherer [4] also discusses how, under these assumptions, the numéraire port-
folio exists and coincides with the log-optimal one. In both these papers, deep results
of Kramkov and Schachermayer [30] on utility maximization are invoked.

Here we follow a bare-hands approach which enables us to obtain stronger results.
Firstly, the assumption of finite expected log-utility is dropped entirely; there should
be no reason for it, anyhow, since we are not working on the problem of log-utility
optimization. Secondly, general closed convex constraints on portfolio choice can
be enforced, as long as they unfold in a predictable manner. Thirdly, and perhaps
most controversially, we drop the NFLVR assumption: no normative assumption is
imposed on the model. It turns out that the numéraire portfolio can exist even when
the classical No Arbitrage (NA) condition fails.

In the context of stochastic portfolio theory, we feel there is no need for no-free-
lunch assumptions to begin with: the rôle of optimization should be to find and utilize
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arbitrage opportunities in the market, rather than ban the model. It is actually possi-
ble that the optimal strategy of an investor is not an arbitrage (an example involves
the notorious three-dimensional Bessel process and can be found in Sect. 4.3.3 of
the present paper). The usual practice of assuming that we can invest unconditionally
on arbitrages breaks down because of credit limit constraints: arbitrages are sure to
generate, at a fixed future date, more capital than initially invested; but they can do
pretty badly in the meantime, and this imposes an upper bound on the capital that
can be invested. There exists an even more severe problem when trying to argue that
arbitrages should be banned: in very general semimartingale financial markets there
does not seem to exist any computationally feasible way of deciding whether arbi-
trages exist or not. This goes hand-in-hand with the fact that existence of equivalent
martingale measures—its remarkable theoretical importance notwithstanding—is not
easy to check, at least by looking directly at the dynamics of the stock-price process.

Our second main result comes hopefully to shed some light on this situation. Hav-
ing made no model assumptions when initially trying to decide whether the numéraire
portfolio exists, we now take a step backwards and in the opposite-than-usual direc-
tion: we ask ourselves what the existence of the numéraire portfolio can tell us about
free-lunch-like opportunities in the market. Here the necessary and sufficient con-
dition for existence of the numéraire portfolio is the boundedness in probability of
the collection of terminal wealths attainable by trading (“no unbounded profit with
bounded risk”, NUPBR, for short). This is one of the two conditions that comprise
NFLVR; what remains, of course, is the NA condition. In the spirit of the Fundamen-
tal Theorem of Asset Pricing, we show that another mathematical equivalence to the
NUPBR condition is the existence of equivalent supermartingale deflators, a concept
closely related but strictly weaker than equivalent martingale measures. A similar re-
sult appears in [8], where the results of Kramkov and Schachermayer [30] are again
used.

We then go on further and ask how severe this NUPBR assumption really is. The
answer is simple: when this condition fails, one cannot do utility optimization for
any utility function; conversely, if this assumption holds, one can proceed with utility
maximization as usual. The main advantage of not assuming the full NFLVR condi-
tion is that there is a direct way of checking the validity of the weaker NUPBR con-
dition in terms of the predictable characteristics of the price process. No such char-
acterization exists for the NA condition, as Example 4.7 in Sect. 4.3 demonstrates.
Furthermore, our result can be used to understand the gap between the concepts of
NA and the stronger NFLVR; the existence of the numéraire portfolio is exactly the
bridge needed to take us from NA to NFLVR. This was known for continuous-path
processes since the paper [11] of Delbaen and Schachermayer; here we do it for the
general case.

1.2 Synopsis

After this short subsection, in the remainder of this section we recall probabilistic
concepts to be used throughout.

Section 2 introduces the financial market model, the ways in which agents can
invest in this market, and the constraints they face. In Sect. 3 we introduce the
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numéraire portfolio. We discuss how it relates to other notions and conclude with
our main Theorem 3.15 that provides necessary and sufficient conditions for the ex-
istence of the numéraire portfolio in terms of the predictable characteristics of the
stock-price processes. Section 4 deals with the connections between the numéraire
portfolio and free lunches. The main result there is Theorem 4.12, which can be seen
as another version of the Fundamental Theorem of Asset Pricing.

Certain proofs that are not given in Sects. 3 and 4 occupy the next four sections.
In the self-contained Sect. 5 we describe necessary and sufficient conditions for the
existence of wealth processes that are increasing and not constant. In Sect. 6 we
prove our main Theorem 3.15. Section 7 contains a result on rates of convergence to
zero of positive supermartingales, which is used to study an asymptotic optimality
property of the numéraire portfolio. Finally, Sect. 8 completes proving our second
main Theorem 4.12.

In order to stay as self-contained as possible, Appendices are included on: (a) mea-
surable random subsets and selections; (b) semimartingales up to infinity and the
corresponding “stochastic integration up to infinity”; and (c) σ -localization.

1.3 Remarks of probabilistic nature

For results concerning the general theory of stochastic processes, we refer the reader
to the book [21] of Jacod and Shiryaev, especially the first two chapters.

We are given a stochastic basis (Ω,F ,F,P), where the filtration F = (Ft )t∈R+ is
assumed to satisfy the usual hypotheses of right-continuity and augmentation by the
P-null sets. The probability measure P will be fixed throughout and every formula,
relationship, etc., is supposed to be valid P-almost surely (P-a.s.)

The predictable σ -algebra on the base space Ω × R+ will be denoted by P—if π

is a d-dimensional predictable process we write π ∈ P(Rd). For any adapted, right-
continuous process Y that admits left-hand limits, we denote by Y− its predictable
left-continuous version and its jump process is �Y := Y − Y−.

For a d-dimensional semimartingale X and π ∈ P(Rd), we denote by π · X the
stochastic integral process, whenever this makes sense, in which case we shall be
referring to π as being X-integrable. We are assuming vector stochastic integration,
good accounts of which can be found in [5, 6, 21]. For two semimartingales X and Y ,
[X,Y ] := XY − X− · Y − Y− · X is their quadratic covariation process.

The stochastic exponential E(Y ) of the scalar semimartingale Y , null at 0, is the
unique solution Z of the stochastic integral equation Z = 1 + Z− · Y and is given by

E(Y ) = exp

{
Y − 1

2

[
Y c, Y c]} ·

∏
s≤·

{
(1 + �Ys) exp(−�Ys)

}
, (1.1)

where Y c denotes the continuous martingale part of the semimartingale Y . The sto-
chastic exponential Z = E(Y ) satisfies Z > 0 and Z− > 0 if and only if �Y > −1.
Given a semimartingale Z which satisfies Z > 0 and Z− > 0, we can invert the sto-
chastic exponential operator and get the stochastic logarithm L(Z), which is defined
as L(Z) := (1/Z−) · Z and satisfies �L(Z) > −1.
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2 The market, investments, and constraints

2.1 The asset-prices model

On the given stochastic basis (Ω,F ,F,P) we consider d strictly positive semimartin-
gales S1, . . . , Sd that model the prices of d assets; we shall refer to these as stocks.
There is also another process S0, representing the money market or bank account—
this asset is a “benchmark”, in the sense that wealth processes will be quoted in units
of S0 and not nominally. As is usually done in this field, we assume S0 ≡ 1, making
S1, . . . , Sd already discounted asset prices. This does not affect the generality of the
discussion, since, otherwise, we can divide all Si , i = 0,1, . . . , d , by S0.

For all i = 1, . . . , d , Si and Si− are assumed strictly positive; therefore, there exists
a d-dimensional semimartingale X ≡ (X1, . . . ,Xd) with X0 = 0, �Xi > −1 and
Si = Si

0 E(Xi) for i = 1, . . . , d . We interpret X as the discounted returns that generate
the asset prices S in a multiplicative way. In our discussion we shall be using the
returns process X, not the stock-price process S directly.

Our financial planning horizon will be [[0, T ]] := {(ω, t) ∈ Ω × R+ | t ≤ T (ω)}
where T is a possibly infinite-valued stopping time. Observe that, as usual, even if
T takes infinite values, the time-point at infinity is not included in the definition of
[[0, T ]]. All processes will be considered as being constant and equal to their value
at T for all times after T , i.e., every process Z is equal to the stopped process at
time T , defined via ZT

t := Zt∧T for all t ∈ R+. We can assume further, without
loss of generality, that F0 is P-trivial (thus, all F0-measurable random variables are
constants) and that F = FT := ∨

t∈R+ Ft∧T .

Remark 2.1 Under our model we have Si > 0 and Si− > 0; to be in par with the papers
[10, 14] on no-free-lunch criteria, we should allow for models with possibly negative
asset prices (for example, forward contracts). All our subsequent work carries over
to these models. We choose to work in the above set-up because it is somehow more
intuitive and applicable: almost every model used in practice is written in this way.
A follow-up to this discussion is Sect. 4.8.

The predictable characteristics of the returns process X will be very important in
our discussion. To this end, we fix the canonical truncation function x �→ xI{|x|≤1}
(we use IA to denote the indicator function of some set A) and write the canonical
representation of the semimartingale X, namely

X = Xc + B + [xI{|x|≤1}] ∗ (μ − η) + [xI{|x|>1}] ∗ μ. (2.1)

Some remarks are in order. Here μ is the jump measure of X, i.e., the random count-
ing measure on R+ × R

d defined by

μ([0, t] × A) :=
∑

0<s≤t

IA\{0}(�Xs), for t ∈ R+ and A ⊆ R
d . (2.2)

Thus, the last process in (2.1) is just [xI{|x|>1}]∗μ ≡ ∑
0<s≤· �XsI{|�Xs |>1} , the sum

of the “big” jumps of X; throughout the paper, the asterisk denotes integration with
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respect to random measures. Once this term is subtracted from X, what remains is
a semimartingale with bounded jumps; thus, a special semimartingale. This, in turn,
can be decomposed uniquely into a predictable finite variation part, denoted by B

in (2.1), and a local martingale part. Finally, this last local martingale part can be
decomposed further: into its continuous part, denoted by Xc in (2.1); and its purely
discontinuous part, identified as the local martingale [xI{|x|≤1}] ∗ (μ − η). Here η is
the predictable compensator of the measure μ; so, the purely discontinuous part is
just a compensated sum of “small” jumps.

We introduce the quadratic covariation process C := [Xc,Xc] of Xc, call
(B,C,η) the triplet of predictable characteristics of X, and define the predictable
increasing scalar process G := ∑d

i=1(C
i,i + Var(Bi)+ [1 ∧ |xi |2] ∗η). Then all three

B , C, and η are absolutely continuous with respect to G, thus,

B = b · G, C = c · G, and η = G ⊗ ν. (2.3)

Here b, c, and ν are predictable; b is a vector process, c a nonnegative-definite matrix-
valued process, and ν a process with values in the set of Lévy measures; the symbol
“⊗” denotes product measure. Note that any G̃ with dG̃t ∼ dGt can be used in place
of G; the actual choice of an increasing process G reflects the notion of operational
clock (as opposed to the natural time flow, described by t). In an abuse of terminology,
we shall refer to (b, c, ν) also as the triplet of predictable characteristics of X; this
depends on G, but the validity of all results does not.

Remark 2.2 The properties of c being a symmetric nonnegative-definite process and
ν a Lévy-measure-valued process in general hold P ⊗ G-a.e. We shall assume that
they hold everywhere on [[0, T ]]; we can always do this by altering them on a pre-
dictable set of P ⊗ G-measure zero to c ≡ 0 and ν ≡ 0 (see [21], Proposition 2.9).

Remark 2.3 If X is quasi-left-continuous (i.e., if no jumps occur at predictable times),
G is continuous; but if we want to include discrete-time models in our discus-
sion, we must allow for G to have jumps. Since C is continuous and (2.1) gives
E[�Xτ I{|�Xτ |≤1} | Fτ−] = �Bτ for every predictable time τ , we get

c = 0 and b =
∫

xI{|x|≤1}ν(dx) on the predictable set {�G > 0}. (2.4)

The following concept of drift rate will be used throughout the paper.

Definition 2.4 Let X be any semimartingale with canonical representation (2.1), and
consider the process G such that (2.3) holds. On {∫ |x|I{|x|>1}ν(dx) < ∞}, the drift
rate (with respect to G) of X is defined as b + ∫

xI{|x|>1}ν(dx).

The range of definition, {∫ |x|I{|x|>1}ν(dx) < ∞}, for the drift rate does not de-
pend on the choice of operational clock G, though the drift rate itself does. Whenever
the increasing process [|x|I{|x|>1}]∗η = (

∫ |x|I{|x|>1}ν(dx)) ·G is finite (this happens
if and only if X is a special semimartingale), the predictable process

B + [xI{|x|>1}] ∗ η =
(

b +
∫

xI{|x|>1}ν(dx)

)
· G
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is called the drift process of X. If drift processes exist, drift rates exist too; the con-
verse is not true. Semimartingales that are not special might have well-defined drift
rates; for instance, a σ -martingale is a semimartingale with drift rate identically equal
to zero. See Appendix 3 on σ -localization for further discussion.

2.2 Portfolios and wealth processes

A financial agent starts with some positive initial capital, which we normalize to
W0 = 1, and can invest in stocks by choosing a portfolio represented by a predictable,
d-dimensional and X-integrable process π . With πi

t representing the proportion of
current wealth invested in stock i at time t , π0

t := 1 − ∑d
i=1 πi

t is the proportion
invested in the money market.

Some restrictions have to be enforced, so that the agent cannot use so-called dou-
bling strategies. The assumption prevailing in this context is that the wealth process
should be uniformly bounded from below by some constant—a credit limit that the
agent faces. We shall set this credit limit at zero (uniformly over strategies); one can
regard this as shifting the wealth process to some constant, and working with this
relative credit line instead of the absolute one.

The above discussion leads to the following definition: a wealth process will be
called admissible, if it and its left-continuous version stay strictly positive. Let us
denote the discounted wealth process generated from a portfolio π by Wπ ; we must
have Wπ > 0 and Wπ− > 0, as well as

dWπ
t

Wπ
t−

=
d∑

i=0

πi
t

dSi
t

Si
t−

=
d∑

i=1

πi
t dXi

t = π

t dXt, equivalently, Wπ = E(π · X).

(2.5)

2.3 Further constraints on portfolios

We start with an example in order to motivate Definition 2.6 below.

Example 2.5 Suppose that the agent is prevented from selling stock short. This
means πi ≥ 0 for all i = 1, . . . , d , or that π(ω, t) ∈ (R+)d for all (ω, t) ∈ [[0, T ]].
If we further prohibit borrowing from the money market then also π0 ≥ 0; setting
C := {p ∈ R

d | pi ≥ 0 and
∑d

i=1 pi ≤ 1}, the prohibition of short sales and borrowing
translates into the requirement π(ω, t) ∈ C for all (ω, t) ∈ [[0, T ]].

The example leads us to consider all possible constraints that can arise this way;
although in the above particular case the set C was non-random, we shall soon en-
counter situations where the constraints depend on both time and the path.

Definition 2.6 Consider a set-valued process C : [[0, T ]] → B(Rd), where B(Rd)

is the Borel σ -algebra on R
d . A π ∈ P(Rd) will be called C-constrained if

π(ω, t) ∈ C(ω, t) for all (ω, t) ∈ [[0, T ]]. We denote by ΠC the class of all
C-constrained, predictable, and X-integrable processes that satisfy π
�X > −1,
i.e., are such that Wπ is admissible.
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The requirement π
�X > −1 is here to ensure that we can define the admissible
wealth process Wπ , i.e., that the wealth will remain strictly positive. Let us use this
requirement to give other constraints of this type. Since these actually follow from
the definitions, they will not constrain the wealth processes further; the point is that
we can always include them in our constraint set.

Example 2.7 (Natural constraints) An admissible strategy generates a wealth process
that starts positive and stays positive. Thus, if Wπ = E(π · X) then we have
�Wπ ≥ −Wπ− , or π
�X ≥ −1. (Of course, the inequalities are actually strict, but
we use this weaker version to keep the set C0, appearing below, closed.) Recalling the
definition of the random measure ν from (2.3), we see that an equivalent requirement
is

ν
[
π
x < −1

] ≡ ν
[{

x ∈ R
d | π
x < −1

}] = 0, P ⊗ G-almost everywhere.

Define now the random set-valued process of natural constraints

C0 := {
p ∈ R

d | ν
[
p
x < −1

] = 0
}

(2.6)

(randomness comes through ν). Since π
�X > −1, π ∈ ΠC implies π ∈ ΠC∩C0 .

Note that C0 is not deterministic in general—random constraints are not intro-
duced just for the sake of generality, but because they arise naturally in portfolio
choice settings. In Sect. 3.3 we shall impose more structure on the set-valued process
C : convexity, closedness, and predictability. The above Examples 2.5 and 2.7 have
these properties; the “predictability structure” should be clear for C0, which involves
the predictable process ν.

3 The numéraire portfolio: definitions, general discussion, and predictable
characterization

3.1 The numéraire portfolio

The following is a central notion of the paper.

Definition 3.1 A process ρ ∈ ΠC will be called numéraire portfolio if for every
π ∈ ΠC the relative wealth process Wπ/Wρ is a supermartingale.

The term “numéraire portfolio” was introduced by Long [33]; he defined it as a
portfolio ρ that makes Wπ/Wρ a martingale for every portfolio π , then went on to
show that this requirement is equivalent, under some additional assumptions, to the
absence of arbitrage for discrete-time and Itô-process models. Some authors give the
numéraire portfolio other names as growth optimal and benchmark (see, for example,
Platen [35] who uses the “numéraire” property as an approach to derivatives pricing,
portfolio optimization, etc.). Definition 3.1 in this form first appeared in [4], where
we send the reader for the history of this concept. An observation from that paper
is that the wealth process generated by numéraire portfolios is unique: if there are
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two numéraire portfolios ρ1 and ρ2 in ΠC then both Wρ1/Wρ2 and Wρ2/Wρ1 are
supermartingales and Jensen’s inequality shows that they are equal.

Observe that W
ρ
T is always well-defined, even on {T = ∞}, since 1/Wρ is a pos-

itive supermartingale and the supermartingale convergence theorem implies that W
ρ
T

exists, though it might take the value +∞ on {T = ∞}. A condition of the form
W

ρ
T < +∞ will be essential when we consider free lunches in Sect. 4.

Remark 3.2 The numéraire portfolio was introduced in Definition 3.1 as the solution
to some sort of optimization problem. It has at least four more optimality properties
that we now mention; these have already been noted in the literature—check the
appropriate places in the paper, where they are further discussed, for references. If ρ

is the numéraire portfolio then:

• It maximizes the growth rate over all portfolios (Sect. 3.5).
• It maximizes the asymptotic growth of the wealth process it generates over all

portfolios (Proposition 3.21).
• It solves the relative log-utility maximization problem (Sect. 3.7).
• (Wρ)−1 minimizes the reverse relative entropy among all supermartingale defla-

tors (Sect. 4.4).

We now state the basic problem that will occupy us in this section; its solution is
the content of Theorem 3.15.

Problem 3.3 Find necessary and sufficient conditions for the existence of the
numéraire portfolio in terms of the triplet of predictable characteristics of the returns
process X (equivalently, of the stock-price process S).

3.2 Preliminary necessary and sufficient conditions for the existence
of the numéraire portfolio

To decide whether ρ ∈ ΠC is the numéraire portfolio, we must check whether
Wπ/Wρ is a supermartingale for all π ∈ ΠC, so let us derive a convenient expression
for this ratio.

Consider a baseline portfolio ρ ∈ ΠC that generates a wealth Wρ and take any
other portfolio π ∈ ΠC; their relative wealth process is given by the ratio Wπ/Wρ =
E(π · X)/E(ρ · X) from (2.5), which can be further expressed as follows.

Lemma 3.4 Suppose that Y and R are two scalar semimartingales with �Y > −1
and �R > −1. Then E(Y )/E(R) = E(Z), where

Z = Y − R − [
Y c − Rc,Rc] −

∑
s≤·

{
�(Ys − Rs)

�Rs

1 + �Rs

}
. (3.1)

Proof The process E(R)−1 is locally bounded away from zero, so the stochas-
tic logarithm Z of E(Y )/E(R) exists. Furthermore, the process on the right-hand
side of (3.1) is well-defined and a semimartingale, since

∑
s≤· |�Rs |2 < ∞ and∑

s≤· |�Ys�Rs | < ∞. Now, E(Y ) = E(R)E(Z) = E(R + Z + [R,Z]), by Yor’s
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formula. Taking stochastic logarithms on both sides of the last equation we get
Y = R + Z + [R,Z]. This is an equation for the process Z; by splitting it into con-
tinuous and purely discontinuous parts, one can guess, then verify, that it is solved by
the right-hand side of (3.1). �

Using Lemma 3.4 and (2.5) we get

Wπ

Wρ
= E

(
(π − ρ) · X(ρ)

)
, with X(ρ) := X − (cρ) · G −

[
ρ
x

1 + ρ
x
x

]
∗ μ;

here μ is the jump measure of X in (2.2), and G is the operational clock of (2.3).
We are interested in ensuring that Wπ/Wρ is a supermartingale. This relative

wealth process is strictly positive, so the supermartingale property is equivalent to
the σ -supermartingale one, which is in turn equivalent to requiring that the drift rate
be finite and negative. (For drift rates, see Definition 2.4. For the σ -localization tech-
nique, see [23]; an overview of what is needed here is in Appendix 3, in particular,
Propositions 11.2 and 11.3.) Since Wπ/Wρ = E((π − ρ) · X(ρ)), the condition of
negativity on the drift rate of Wπ/Wρ is equivalent to the requirement that the drift
rate of the process (π − ρ) · X(ρ) be negative. Straightforward computations show
that, when it exists, this drift rate is

rel(π | ρ) := (π − ρ)
b − (π − ρ)
cρ +
∫

ϑπ |ρ(x) ν(dx). (3.2)

(The notation rel(π | ρ) stresses that this quantity is the rate of return of the relative
wealth process Wπ/Wρ .) The integrand ϑπ |ρ(·) in (3.2) is

ϑπ |ρ(x) :=
[
(π − ρ)
x

1 + ρ
x
− (π − ρ)
xI{|x|≤1}

]
= 1 + π
x

1 + ρ
x
− 1 − (π − ρ)
xI{|x|≤1};

this satisfies ν[x ∈ R
d | ϑπ |ρ(x) ≤ −1 and |x| > 1] = 0, while on {|x| ≤ 1} (near

x = 0) it behaves like (ρ − π)
xx
ρ, comparable to |x|2. The integral in (3.2),
therefore, always makes sense, but can take the value +∞; the drift rate of Wπ/Wρ

takes values in R ∪ {+∞} , and the quantity of (3.2) is well-defined.
Thus, Wπ/Wρ is a supermartingale if and only if rel(π | ρ) ≤ 0, P ⊗ G-almost

everywhere. Using this last fact we get preliminary necessary and sufficient condi-
tions needed to solve Problem 3.3. In a different, more general form (involving also
“consumption”) these have already appeared in [18].

Lemma 3.5 Suppose that the constraints C imply the natural constraints of (2.6) (i.e.,
C ⊆ C0), and consider a process ρ with ρ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ [[0, T ]]. This
ρ is the numéraire portfolio in the class ΠC if and only if:

(1) rel(π | ρ) ≤ 0, P ⊗ G-a.e. for every π ∈ P(Rd) with π(ω, t) ∈ C(ω, t)

(2) ρ is predictable and
(3) ρ is X-integrable
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Proof The three conditions are clearly sufficient for ensuring that Wπ/Wρ is a su-
permartingale for all π ∈ ΠC.

The necessity is trivial, but for the fact that condition (1) is to hold not only for
all π ∈ ΠC, but for any predictable process π (not necessarily X-integrable) such
that π(ω, t) ∈ C(ω, t). Suppose condition (1) holds for all π ∈ ΠC; first, take any
ξ ∈ P such that ξ(ω, t) ∈ C(ω, t) and ξ
�X > −1. Then ξn := ξI{|ξ |≤n} + ρI{|ξ |>n}
belongs to ΠC, so rel(ξ | ρ)I{|ξ |≤n} = rel(ξn | ρ)I{|ξ |≤n} ≤ 0; sending n to infinity
we get rel(ξ | ρ) ≤ 0. Now pick any ξ ∈ P(Rd) such that ξ(ω, t) ∈ C(ω, t); we have
ξ
�X ≥ −1 but not necessarily ξ
�X > −1. Then, for n ∈ N, ξn := (1 − n−1)ξ

also satisfies ξn ∈ P(Rd) and ξn(ω, t) ∈ C(ω, t), and further ξ

n �X > −1; it follows

that rel(ξn | ρ) ≤ 0. Fatou’s lemma now gives rel(ξ | ρ) ≤ 0. �

In order to solve Problem 3.3, the conditions of Lemma 3.5 will be tackled one
by one. For condition (1), it will turn out that one has to solve, for each fixed
(ω, t) ∈ [[0, T ]], a convex optimization problem over the set C(ω, t). It is obvious
that if (1) above is to hold for C then it must also hold for the closed convex hull of C,
so we might as well assume that C is closed and convex. For condition (2), in order to
prove that the solution we get is predictable, the set-valued process C must have some
predictable structure; we describe in the next subsection how this is done. After that,
a simple test will give us condition (3), and we shall be able to provide the solution
of Problem 3.3 in Theorem 3.15.

3.3 The predictable, closed convex structure of constraints

We start with a remark concerning market degeneracies, i.e., linear dependence that
some stocks might exhibit at some points of the base space, causing seemingly dif-
ferent portfolios to produce the exact same wealth processes; such portfolios should
then be treated as equivalent. To formulate this notion, consider two portfolios π1
and π2 with Wπ1 = Wπ2 . Take stochastic logarithms on both sides of the last equal-
ity to get π1 · X = π2 · X. Then ζ := π2 − π1 satisfies ζ · X ≡ 0; this is equivalent to
ζ · Xc = 0, ζ
�X = 0, and ζ · B = 0, and suggests the following definition.

Definition 3.6 For a triplet of predictable characteristics (b, c, ν), the linear-
subspace-valued process of null investments N is the set of vectors (depending on
(ω, t), of course) for which nothing happens if one invests in them, namely,

N(ω, t) := {
ζ ∈ R

d | ζ
c(ω, t) = 0, ν(ω, t)[ζ
x �= 0] = 0 and ζ
b(ω, t) = 0
}
.

(3.3)

We have Wπ1 = Wπ2 if and only if π2(ω, t) − π1(ω, t) ∈ N(ω, t), for P ⊗ G-
almost every (ω, t) ∈ [[0, T ]]; then, the portfolios π1 and π2 are considered identical.

Definition 3.7 The R
d -set-valued process C will be said to impose predictable closed

convex constraints if:

(1) N(ω, t) ⊆ C(ω, t) for all (ω, t) ∈ [[0, T ]]
(2) C(ω, t) is a closed convex set, for all (ω, t) ∈ [[0, T ]] and
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(3) C is predictably measurable, in the sense that for any closed F ⊆ R
d we have

{C ∩ F �= ∅} := {(ω, t) ∈ [[0, T ]] | C(ω, t) ∩ F �= ∅} ∈ P

Note the insistence that (1), (2) must hold for every (ω, t) ∈ [[0, T ]], not just in an
“almost every” sense. Requirement (1) says that we are giving investors at least the
freedom to do nothing: if an investment is to lead to absolutely no profit or loss, one
should be free to do it. In the non-degenerate case this just becomes 0 ∈ C(ω, t) for
all (ω, t) ∈ [[0, T ]] . Appendix 1 discusses further the measurability requirement (3)
and its equivalence with other definitions of measurability.

The natural constraints C0 of (2.6) satisfy the requirements of Definition 3.7. For
the predictability requirement, write C0 = {p ∈ R

d | ∫
κ(1 + p
x)ν(dx) = 0}, where

κ(x) := (x ∧0)2/(1+(x ∧0)2); then use Lemma 9.4 in conjunction with Remark 2.2,
which provides a version of the characteristics such that the integrals in the above
representation of C0 make sense for all (ω, t) ∈ [[0, T ]]. In view of this

we shall always assume C ⊆ C0 from now on,

since, otherwise, we can replace C by C ∩ C0 (and use the fact that intersections
of closed predictable set-valued processes are also predictable—see Lemma 9.3 of
Appendix 1).

3.4 Unbounded increasing profit

We proceed with an effort to understand condition (1) in Lemma 3.5. In this subsec-
tion we state a sufficient condition for its failure in terms of predictable characteris-
tics. In the next subsection, when we state our first main theorem about the existence
of the numéraire portfolio, we shall see that this condition is also necessary. Its failure
is intimately related to the existence of wealth processes that start with unit capital,
make some wealth with positive probability, and are increasing. The existence of such
a possibility in a financial market amounts to the most egregious form of arbitrage.

Definition 3.8 The predictable set-valued process Č := ⋂
a>0 aC is the set of cone

points (or recession cone) of C. A portfolio π ∈ Π
Č

will be said to generate
an Unbounded Increasing Profit (UIP), if the wealth process Wπ is increasing
(P[Wπ

s ≤ Wπ
t ,∀ s < t ≤ T ] = 1), and if P[Wπ

T > 1] > 0. If no such portfolio ex-
ists, then we say that the No Unbounded Increasing Profit (NUIP) condition holds.

The qualifier “unbounded” stems from the fact that since π ∈ Π
Č

, an agent has
unconstrained leverage on the position π and can invest unconditionally; by doing so,
the agent’s wealth will be multiplied accordingly. It should be clear that the numéraire
portfolio cannot exist, if such strategies exist. To obtain a connection with predictable
characteristics, we also give the definition of the immediate arbitrage opportunity
vectors in terms of the characteristic triplet.

Definition 3.9 For a triplet of predictable characteristics (b, c, ν), the set-valued
process I of immediate arbitrage opportunities is defined for any (ω, t) ∈ Ω × R+
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as the set of vectors ξ ∈ R
d \ N(ω, t) for which

(1) ξ
c = 0, (2) ν[ξ
x < 0] = 0, and (3) ξ
b −
∫

ξ
xI{|x|≤1}ν(dx) ≥ 0.

(We have hidden the dependence of (b, c, ν) on (ω, t) above to ease the reading.)

N-valued processes satisfy these three conditions, but cannot be considered “arbi-
trage opportunities,” since they have zero returns. One can see that I is cone-valued
with the whole “face” N removed.

Assume, for simplicity of discussion only, that X is a Lévy process; and that we
can find a vector ξ ∈ I (which is deterministic). In Definition 3.9, condition (1) im-
plies that ξ · X has no diffusion part; (2) implies that ξ · X has no negative jumps;
whereas, (3) turns out to imply that ξ ·X has nonnegative drift and is of finite variation
(though this is not as obvious). Using ξ /∈ N, we get that ξ · X is actually non-zero
and increasing, and the same will hold for Wξ = E(ξ ·X); see Sect. 5.1 for a thorough
discussion of the general (not necessarily Lévy-process) case.

Proposition 3.10 The NUIP condition is equivalent to requiring that the predictable
set {I ∩ Č �= ∅} := {(ω, t) ∈ [[0, T ]] | I(ω, t) ∩ Č(ω, t) �= ∅} be P ⊗ G-null.

The proof of this result is given in Sect. 5. Section 5.1 contains one side of the
argument (if an UIP exists, then {I ∩ Č �= ∅} cannot be P ⊗ G-null) and makes a
rather easy reading. The other direction, though it follows from the same idea, has a
“measurable selection” flavor and the reader might wish to skim it.

Remark 3.11 We describe briefly the connection between Proposition 3.10 and our
original Problem 3.3. We discuss how if I ∩ Č �= ∅ has non-zero P ⊗ G-measure,
one cannot find a process ρ ∈ ΠC such that rel(π | ρ) ≤ 0 holds for all π ∈ ΠC.
Indeed, a standard measurable selection argument (for details, the reader should
check Sect. 5) allows us to infer the existence of a process ξ such that ξ(ω, t) ∈
I(ω, t) ∩ Č(ω, t) on {I ∩ Č �= ∅} and ξ = 0, otherwise. Now suppose that ρ satisfies
rel(π | ρ) ≤ 0, for all π ∈ ΠC. Since ξ ∈ Π

Č
, we have nξ ∈ ΠC for all n ∈ N, as well

as (1 − n−1)ρ + ξ ∈ ΠC from convexity; but C is closed-set-valued, so ρ + ξ ∈ ΠC.
Now from (3.2) and the definition of I, we see that

rel(ρ + ξ | ρ) = · · · = ξ
b −
∫

ξ
xI{|x|≤1}ν(dx) +
∫

ξ
x

1 + ρ
x
ν(dx) > 0

holds on {I ∩ Č �= ∅}, which has positive P ⊗ G-measure. This is a contradiction:
there cannot exist any ρ ∈ ΠC satisfying rel(π | ρ) ≤ 0 for all π ∈ ΠC.

Proving the converse—namely, if {I ∩ Č = ∅} is P ⊗ G-null then one can find a
ρ ∈ ΠC that satisfies rel(π | ρ) ≤ 0 for all π ∈ ΠC—is more involved and will be
taken on in Sect. 6.

Example 3.12 If ν ≡ 0, an immediate arbitrage opportunity is a ξ ∈ ΠRd with cξ = 0
and ξ
b > 0 on a set of positive P ⊗ G-measure. It follows that if X has continu-
ous paths, immediate arbitrage opportunities do not exist if and only if b lies in the
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range of c, i.e., if there exists a d-dimensional process ρ with b = cρ; of course, if
c is non-singular P ⊗ G-almost everywhere, this always holds and ρ = c−1b. It is
easy to see that this “no immediate arbitrage opportunity” condition is equivalent to
dBt � d[X,X]t . We refer the reader to [25], Appendix B of [27], and [11] for a more
thorough discussion.

Remark 3.13 Let us write X = A + M for the unique decomposition of a special
semimartingale X into a predictable finite variation part A and a local martingale M ,
which we further assume is locally square-integrable. If 〈M,M〉 is the predictable
compensator of [M,M], Example 3.12 shows that in continuous-path models the
condition for absence of immediate arbitrage is dAt � d〈M,M〉t . Compare this with
the more complicated way we have defined this notion in Definition 3.9. Could the
simple criterion dAt � d〈M,M〉t work in more general situations? It is easy to see
that dAt � d〈M,M〉t is necessary for the absence of immediate arbitrage opportuni-
ties; but it is not sufficient—it is too weak. Take, for example, X to be the standard
Poisson process. In the non-constrained case, any positive portfolio is an immediate
arbitrage opportunity. Nevertheless, At = t and Mt = Xt − t with 〈M,M〉t = t = At ,
so that dAt � d〈M,M〉t holds trivially.

3.5 The growth-optimal portfolio and connection with the numéraire portfolio

We hinted in Remark 3.11 that if {I∩ Č �= ∅} is P⊗G-null then one can find a process
ρ ∈ ΠC such that rel(π | ρ) ≤ 0 for all π ∈ ΠC. It is actually also important to have
a way of computing this process ρ.

For a portfolio π ∈ ΠC, its growth rate is defined as the drift rate of the log-wealth
process logWπ . One can use the stochastic exponential formula (1.1) and formally
(since this will not always exist) compute the growth rate of Wπ as

g(π) := π
b − 1

2
π
cπ +

∫ [
log

(
1 + π
x

) − π
xI{|x|≤1}
]
ν(dx). (3.4)

We describe (somewhat informally) the connection between the numéraire port-
folio and the portfolio that maximizes in an (ω, t)-pointwise sense the growth rate
over all portfolios in ΠC in the case of a deterministic triplet. Note that for the gen-
eral semimartingale case this connection has already been observed in [18]. A ρ ∈ C

maximizes the concave function g if and only if the derivative of g at the point ρ is
negative in all directions π − ρ, π ∈ C. This directional derivative is

(∇g)ρ(π − ρ) = (π − ρ)
b − (π − ρ)
cρ

+
∫ [

(π − ρ)
x

1 + ρ
x
− (π − ρ)
xI{|x|≤1}

]
ν(dx),

which is exactly rel(π | ρ). Of course, we do not know if we can differentiate under
the integral appearing in (3.4). Even worse, we do not know a priori whether the
integral is well-defined. Both its positive and negative parts could lead to infinite
results. We now describe a class of Lévy measures for which the concave growth rate
function g(·) of (3.4) is well-defined.
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Definition 3.14 A Lévy measure ν for which
∫

log(1 + |x|) I{|x|>1}ν(dx) < ∞ will
be said to integrate the log. Now consider any Lévy measure ν; an approximat-
ing sequence is a sequence (νn)n∈N of Lévy measures that integrate the log with
νn ∼ ν, whose densities fn := dνn/dν satisfy 0 < fn ≤ 1, fn(x) = 1 for |x| ≤ 1, and
↑-limn→∞ fn = I.

There are many ways to choose the sequence (νn)n∈N, or, equivalently, the densi-
ties (fn)n∈N ; as a concrete example, take fn(x) = I{|x|≤1} + |x|−1/n

I{|x|>1}.
The integral in (3.4) is well defined and finite, when the Lévy measure ν integrates

the log; and then ρ is the numéraire portfolio if and only if it maximizes g(·) point-
wise. If ν fails to integrate the log, we shall consider a sequence of auxiliary problems
as in Definition 3.14, then show that their solutions converge to the solution of the
original problem.

3.6 The first main result

We are now ready to state the main result of this section, which solves Prob-
lem 3.3. We already discussed Condition (1) of Lemma 3.5 and its predictable char-
acterization: there exists a predictable process ρ with ρ(ω, t) ∈ C(ω, t) such that
rel(π | ρ) ≤ 0 for all π ∈ ΠC, if and only if {I ∩ Č �= ∅} has zero P ⊗ G-measure
(Remark 3.11). If this holds, we construct such a process ρ; the only thing that might
keep ρ from being the numéraire portfolio is failure of X-integrability. To deal with
this issue, define for a given predictable ρ

ψρ := ν
[
ρ
x > 1

] +
∣∣∣∣ρ
b +

∫
ρ
x(I{|x|>1} − I{|ρ
x|>1})ν(dx)

∣∣∣∣.
Here is the statement of the main result; its proof is given in Sect. 6.

Theorem 3.15 Consider a financial model described by a semimartingale returns
process X and predictable closed convex constraints C.

(1.i) If the predictable set {I ∩ Č �= ∅} has zero P ⊗ G-measure then there exists a
unique process ρ ∈ P(Rd) with ρ(ω, t) ∈ C∩N⊥(ω, t) for all (ω, t) ∈ [[0, T ]]
such that rel(π | ρ) ≤ 0 for all π ∈ ΠC.

(1.ii) On the predictable set Λ := {∫ log(1 + |x|)I{|x|>1}ν(dx) < ∞}, this process ρ

is obtained as the unique solution of the concave optimization problem

ρ = arg max
π∈C∩N⊥

g(π).

In general, ρ can be obtained as the limit of solutions to corresponding prob-
lems (where one replaces ν by (νn), an approximating sequence in the defini-
tion of g).

(1.iii) Furthermore, if the above constructed process ρ ∈ P(Rd) is such that
(ψρ · G)t < +∞ on [[0, T ]] then ρ is X-integrable and is the numéraire port-
folio.
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2. Conversely to (1.i–1.ii–1.iii) above, if the numéraire portfolio ρ exists in ΠC

then the predictable set {I ∩ Č �= ∅} has zero P ⊗ G-measure, and ρ satisfies
(ψρ · G)t < +∞ on [[0, T ]] , as well as rel(π | ρ) ≤ 0 for all π ∈ ΠC.

Let us pause to comment on the predictable characterization of X-integrability
of ρ, which amounts to G-integrability of both processes

ψ
ρ
1 := ν

[
ρ
x > 1

]
and ψ

ρ
2 := ρ
b +

∫
ρ
x (I{|x|>1} − I{|ρ
x|>1})ν(dx). (3.5)

The integrability of ψ
ρ
1 states that ρ · X cannot have an infinite number of large

positive jumps on finite time-intervals; but this must hold, if ρ · X is to be well-
defined. The second term ψ

ρ
2 is exactly the drift rate of the part of ρ · X that remains

when we subtract all large positive jumps (more than a unit in magnitude). This part
has to be a special semimartingale, so its drift rate must be G-integrable, which is
exactly the requirement (|ψρ

2 | · G)t < ∞ on [[0, T ]].
The requirement P[(ψρ · G)t < +∞ on [[0, T ]]] = 1 does not imply

(ψρ · G)T < +∞ on {T = ∞}. The stronger requirement (ψρ · G)T < ∞ means
that ρ is X-integrable up to time T , in the terminology of Appendix 2. This, in turn,
is equivalent to the fact that the numéraire portfolio exists and that W

ρ
T < ∞ (even

on {T = ∞}). We shall return to this when we study arbitrage in the next section.

Remark 3.16 The conclusion of Theorem 3.15 can be stated succinctly as follows: the
numéraire portfolio exists if and only if we have Ψ (B,C,η) < ∞ on [[0, T ]] , for the
deterministic, increasing functional Ψ (B,C,η) := (∞ I{I∩Č�=∅} + ψρ

I{I∩Č=∅}) · G
of the triplet of predictable characteristics (B,C,η).

Example 3.17 Consider the unconstrained case C = R
d for the continuous-path semi-

martingale case of Example 3.12. Since (∇g)π = b − cπ = cρ − cπ is trivially zero
for π = ρ, ρ will be the numéraire portfolio as long as ((ρ
cρ) ·G)t < ∞ on [[0, T ]],
or, in the case where c−1 exists, when ((b
c−1b) · G)t < ∞ on [[0, T ]].

3.7 Relative log-optimality

In this and the next subsection we give two optimality properties of the numéraire
portfolio. Here we show that it is exactly the log-optimal portfolio, if the latter is
defined in a relative sense.

Definition 3.18 A portfolio ρ ∈ ΠC will be called relatively log-optimal, if

E

[
lim sup

t↑T

(
log

Wπ
t

W
ρ
t

)]
≤ 0 holds for every π ∈ ΠC.

Here the lim sup is clearly superfluous on {T < ∞} but we include it to also cover
the infinite time-horizon case. If ρ is relatively log-optimal, the lim sup is actually a
finite limit; this is an easy consequence of the following result.
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Proposition 3.19 A numéraire portfolio exists if and only if a relatively log-optimal
portfolio exists, in which case the two are the same.

Proof Whenever we write W
π1
T /W

π2
T for π1 and π2 in ΠC, we tacitly imply that on

{T = ∞} the limit of this ratio exists, and take W
π1
T /W

π2
T to be that limit.

• Suppose ρ is a numéraire portfolio. For any π ∈ ΠC we have E[Wπ
T /W

ρ
T ] ≤ 1, and

Jensen’s inequality gives E[log(Wπ
T /W

ρ
T )] ≤ 0, so ρ is also relatively log-optimal.

• Let us now assume that a relative log-optimal portfolio ρ̂ exists—we shall show
that the numéraire portfolio exists and is equal to ρ̂. Without loss of generality,
assume that ρ̂(ω, t) lies in N(ω, t) for P ⊗ G-almost every (ω, t) ∈ [[0, T ]]—
otherwise, we project ρ̂(ω, t) on N(ω, t) and observe that the projected portfolio
generates the same wealth as the original.

First, we observe that {I ∩ Č �= ∅} must have zero P ⊗ G-measure. To see why,
suppose the contrary. Then, by Proposition 3.10, we could select a portfolio ξ ∈ ΠC

that leads to unbounded increasing profit. According to Remark 3.11, we would
have ρ̂ + ξ ∈ ΠC and rel(ρ̂ | ρ̂ + ξ) ≤ 0, with strict inequality on a predictable
set of positive P ⊗ G-measure; this would mean that the process Wρ̂/Wρ̂+ξ is
a non-constant positive supermartingale, and Jensen’s inequality again would give

E[log(W
ρ̂
T /W

ρ̂+ξ
T )] < 0, contradicting the relative log-optimality of ρ̂.

Continuing, since {I ∩ Č �= ∅} has zero P ⊗ G-measure, we can construct the pre-
dictable process ρ which is the candidate in Theorem 3.15 (1) for being the numéraire
portfolio. We only need to show that the predictable set {ρ̂ �= ρ} has zero P ⊗ G-
measure. By way of contradiction, suppose that An := {ρ̂ �= ρ, |ρ| ≤ n} has non-zero
P ⊗ G-measure for some n ∈ N. We then define π := ρ̂ I[[0,T ]]\An + ρ IAn ∈ ΠC—
since rel(ρ̂ | π) = rel(ρ̂ | ρ)IAn ≤ 0 with strict inequality on An, the same argument
as in the end of the preceding paragraph shows that ρ̂ cannot be the relatively log-
optimal portfolio. We conclude that {ρ̂ �= ρ} = ⋃

n∈N
An has zero P ⊗ G-measure,

and thus ρ = ρ̂ is the numéraire portfolio. �

We remark that if the log-utility optimization problem has a finite value and
the condition NFLVR of Delbaen and Schachemayer [10] holds (see also Defini-
tion 4.1 below), the result of the last proposition is well-known—see, for example,
[30]. Christensen and Larsen [8] start by adopting the above “relative” definition as
log-optimality (or, as they call it, “growth optimality”) and eventually show that the
growth-optimal is equal to the numéraire portfolio.

Example 3.20 Take a one-stock market model with St = exp(βT ∧t ), where β is a
standard, one-dimensional Brownian motion and T an a.s. finite stopping time with
E[β−

T ] < +∞ and E[β+
T ] = +∞. Then E[logST ] = +∞ and the classical log-utility

optimization problem is not well-posed (one can find a multitude of portfolios with
infinite expected log-utility). In this case, Example 3.12 shows that ρ = 1/2 is both
the numéraire and the relative log-optimal portfolio.
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3.8 An asymptotic optimality property

In this subsection we deal with a purely infinite time-horizon case T ≡ ∞ and
describe an “asymptotic growth optimality” property of the numéraire portfolio ρ,
which we assume to exist. Note that for any portfolio π ∈ ΠC the process Wπ/Wρ

is a positive supermartingale and, therefore, limt→∞(Wπ
t /W

ρ
t ) exists in [0,+∞).

Consequently, for any increasing process H with H∞ = +∞ (H does not even
have to be adapted), we have lim supt→∞((Ht )

−1 log(Wπ
t /W

ρ
t )) ≤ 0. A closely-

related version of “asymptotic growth optimality” was first observed and proved in
Algoet and Cover [1] for the discrete-time case; see also [27], Sect. 3.10, and [18]
for a discussion of this asymptotic optimality in the continuous-path and the general
semimartingale case, respectively. In the above-mentioned works, the authors prove
that lim supt→∞(t−1 logWπ

t ) ≤ lim supt→∞(t−1 logW
ρ
t ) ≤ 0, which is certainly a

weaker statement than what we mention (interestingly, the proof used is more in-
volved, using a “Borel–Cantelli”-type argument).

Our next result, Proposition 3.21, separates the cases when limt→∞(Wπ
t /W

ρ
t ) is

(0,∞)-valued and when it is zero, and describes this dichotomy in terms of pre-
dictable characteristics. In the case of convergence to zero, it quantifies how fast this
convergence takes place. Its proof is given in Sect. 7.

Proposition 3.21 Assume that the numéraire portfolio ρ exists on [[0,∞]]. For any
other π ∈ ΠC, define the positive, predictable process

hπ := −rel(π | ρ) + 1

2
(π − ρ)
c(π − ρ) +

∫
qa

(
1 + π
x

1 + ρ
x

)
ν(dx),

and the increasing, predictable process Hπ := hπ · G. Here we use the positive, con-
vex function qa(y) := [− loga + (1 −a−1)y]I[0,a)(y)+ [y − 1 − logy]I[a,+∞)(y) for
some a ∈ (0,1). Then, on {Hπ∞ < +∞}, limt→∞(Wπ

t /W
ρ
t ) ∈ (0,+∞), while

on
{
Hπ∞ = +∞}

, lim sup
t→∞

(
1

Hπ
t

log
Wπ

t

W
ρ
t

)
≤ −1.

Remark 3.22 Some comments are in order. We begin with the “strange-looking”
function qa(·), that depends also on the (cut-off point) parameter a ∈ (0,1). Ideally
we should like to define q0(y) = y −1− logy for all y > 0, since then the predictable
increasing process Hπ would be exactly the negative of the drift of the semimartin-
gale log(Wπ/Wρ). Unfortunately, a problem arises when the positive predictable

process
∫

q0(
1+π
x
1+ρ
x

)ν(dx) fails to be G-integrable, which is equivalent to saying
that log(Wπ/Wρ) is not a special semimartingale; the problem comes from the fact
that q0(y) explodes to +∞, as y ↓ 0. For this reason, we define qa(·) to be equal
to q0(·) on [a,∞), linear on [0, a), and continuously differentiable at the “glueing”
point a. The functions qa(·) are all finite-valued at y = 0 and satisfy qa(·) ↑ q0(·), as
a ↓ 0.

Let us now study hπ and Hπ . Observe that hπ is predictably convex in π , namely,
if π1 and π2 are two portfolios and λ is a [0,1]-valued predictable process then
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hλπ1+(1−λ)π2 ≤ λhπ1 + (1 − λ)hπ2 . This, together with the fact that hπ = 0 if and
only if π − ρ is a null investment, casts hπ as a measure of instantaneous deviation
of π from ρ; by the same token, Hπ∞ can be seen as the total (cumulative) deviation
of π from ρ. With this in mind, Proposition 3.21 says that, if an investment deviates
a lot from the numéraire portfolio ρ (i.e., if Hπ∞ = +∞), its long-term performance
will lag considerably behind that of ρ. Only if an investment tracks very closely the
numéraire portfolio over [0,∞) (i.e., if Hπ∞ < +∞) will the two wealth processes
have comparable growth. Letting a ↓ 0 in the definition of Hπ we get equivalent mea-
sures of distance of a portfolio π from the numéraire portfolio because {Hπ∞ = +∞}
does not depend on the choice of a; nevertheless, we get ever sharper results, since
hπ is increasing for decreasing a ∈ (0,1).

4 Unbounded profits with bounded risks, supermartingale deflators, and the
numéraire portfolio

In this section we proceed to investigate how the existence or non-existence of the
numéraire portfolio relates to some concept of “free lunch” in the financial market.
We shall eventually prove a version of the Fundamental Theorem of Asset Pricing;
this is our second main result, Theorem 4.12.

4.1 Arbitrage-type definitions

We first recall two widely known no-free-lunch conditions for financial markets (NA
and the stronger NFLVR), together with yet another notion which is exactly what
one needs to bridge the gap between the previous two, and will actually be the most
important for our discussion.

Definition 4.1 For the following definitions we consider our financial model with
constraints C on portfolios. When we write Wπ

T for some π ∈ ΠC we assume tacitly
that limt→∞ Wπ

t exists on {T = ∞}, and set Wπ
T equal to that limit.

• A portfolio π ∈ ΠC is said to generate an arbitrage opportunity, if
P[Wπ

T ≥ 1] = 1 and P[Wπ
T > 1] > 0. If no such portfolio exists we say that the

C-constrained market satisfies the No Arbitrage condition, which we denote by
NAC.

• A sequence (πn)n∈N of portfolios in ΠC is said to generate an unbounded profit
with bounded risk (UPBR), if the collection of positive random variables (W

πn

T )n∈N

is unbounded in probability, i.e., if ↓-limm→∞ supn∈N P[Wπn

T > m] > 0. If no such
sequence exists, we say that the constrained market satisfies the no unbounded
profit with bounded risk (NUPBRC) condition.

• A sequence (πn)n∈N of portfolios in ΠC is said to be a free lunch with vanish-
ing risk (FLVR), if there exist an ε > 0 and an increasing sequence (δn)n∈N with
0 ≤ δn ↑ 1, such that P[Wπn

T > δn] = 1 as well as P[Wπn

T > 1 + ε] ≥ ε. If no such
sequence exists, we say that the market satisfies the no free lunch with vanishing
risk (NFLVRC) condition.
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The NFLVR condition was introduced by Delbaen and Schachermayer [10] in
a slightly different form. With the above definition of FLVR and the convexity
Lemma A.1.1 from [10], we can further assume that there exists a [1,+∞]-valued
random variable f with P[f > 1] > 0 such that P-limn→∞ W

πn

T = f ; this brings us
back to the usual definition in [10].

If an UPBR exists, one can find a sequence of wealth processes, each starting
with less and less capital (converging to zero) and such that the terminal wealths are
unbounded with a fixed probability. Thus, UPBR can be translated as “the possibility
of making (a considerable) amount out of almost nothing”; it should be contrasted
with the classical notion of arbitrage, which can be translated as “the certainty of
making something more out of something”.

Observe that NUPBRC can be alternatively stated by using portfolios with
bounded support, so the requirement of a limit at infinity for the wealth processes
on {T = ∞} is automatically satisfied. This is relevant because, as we shall see,
when NUPBRC holds, every wealth process Wπ has a limit on {T = ∞} and is a
semimartingale up to T in the terminology of Appendix 2.

None of the two conditions NAC and NUPBRC implies the other, and they are not
mutually exclusive. It is easy to see that they are both weaker than NFLVRC, and that,
in fact, we have the following result which gives the exact relationships among these
notions under cone constraints. Its proof can be found in [10] for the unconstrained
case; we include it here for completeness.

Proposition 4.2 Suppose that C enforces predictable closed convex cone constraints.
Then NFLVRC holds if and only if both NAC and NUPBRC hold.

Proof It is obvious that if either NAC or NUPBRC fail then NFLVRC fails too.
Conversely, suppose that NFLVRC fails. If NAC fails there is nothing more to
say, so suppose that NAC holds and let (πn)n∈N generate a free lunch with van-
ishing risk. Under NAC , the assumption P[Wπn

T > δn] = 1 results in the stronger
P[Wπn

t > δn for all t ∈ [0, T ]] = 1. Construct a new sequence of wealth processes
(Wξn)n∈N by requiring Wξn = 1+(1−δn)

−1(Wπn −1), check that Wξn > 0, and then
that ξn ∈ ΠC (here it is essential that C be a cone). Furthermore, P[Wπn

T ≥ 1 + ε] ≥ ε

becomes P[Wξn

T > 1+ (1−δn)
−1ε] ≥ ε ; thus, (ξn)n∈N generates an unbounded profit

with bounded risk and NUPBRC fails. �

4.2 Fundamental theorem of asset pricing (FTAP)

The NFLVRC condition has proven very fruitful in contexts where we can change the
original measure P to some other equivalent probability Q, under which the wealth
processes have some kind of (super)martingale property.

Definition 4.3 Consider a financial market model described by a semimartingale
discounted stock price process S and predictable closed convex constraints C on
portfolios. A probability Q will be called a equivalent C-supermartingale measure
(ESMMC , for short), if Q ∼ P on FT , and if Wπ is a Q-supermartingale for every
π ∈ ΠC. The class of ESMMC is denoted by MC.
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Similarly, define a equivalent C-local martingale measure (ELMMC , for short) Q

by requiring Q ∼ P on FT and that Wπ be a Q-local martingale for every π ∈ ΠC.

In Definition 4.3 we might as well assume that C are cone constraints; because, if
ESMMC holds the same holds for the market under constraints cone(C), the closure
of the cone generated by C.

The following result is one of the best-known in mathematical finance; we present
its “cone-constrained” version.

Theorem 4.4 (FTAP) For a financial market model with stock-price process S and
predictable closed convex cone constraints C, NFLVRC is equivalent to MC �= ∅.

Because we are working under constraints, we cannot hope, in general, for any-
thing better than an equivalent supermartingale measure in the statement of Theo-
rem 4.4. One can see this easily in the case where X is a single-jump process which
jumps at a stopping time τ with �Xτ ∈ (−1,0) and we are constrained in the cone
of positive strategies. Under any measure Q ∼ P, the process S = E(X) = W 1, an ad-
missible wealth process, will be non-increasing and not identically zero; this prevents
it from being even a local martingale.

The implication MC �= ∅ ⇒ NFLVRC is easy; the reverse is considerably harder
for the general semimartingale model. Several papers are devoted to proving some
version of Theorem 4.4; in the generality assumed here, a proof appears in [22], al-
though all the crucial work was done by Delbaen and Schachermayer [10] and the
theorem is certainly due to them. Theorem 4.4 can be derived from Kabanov’s state-
ment, since the class of wealth processes (Wπ)π∈ΠC

is convex and closed in the
semimartingale (also called “Émery”) topology. A careful inspection in Mémin’s
work [34] of the proof that the set of all stochastic integrals with respect to the
d-dimensional semimartingale X is closed under this topology, shows that one
can pick the limiting semimartingale from a convergent sequence (Wπn)n∈N, with
πn ∈ ΠC for all n ∈ N , to be of the form Wπ for some π ∈ ΠC .

4.3 Beyond the fundamental theorem of asset pricing

Let us study some more the assumptions and the statement of Theorem 4.4. We shall
be concerned with three questions, which will turn out to have the same answer; this
answer will be linked with the NUPBRC condition and—as we shall see in Theo-
rem 4.12—with the existence of the numéraire portfolio.

4.3.1 Convex but non-conic constraints

In the statement of Theorem 4.4 it is crucial that the constraint be a cone—the result
fails without the “cone” assumption. Of course, MC �= ∅ ⇒ NFLVRC still holds,
but the reverse does not, as shown in the example below (a raw version of a similar
example from [29]).

Example 4.5 Consider two stocks with discounted prices S1 and S2 in a simple one-
period, discrete-time model. We have S1

0 = S2
0 = 1, while S1

1 = 1 + e and S2
1 = f .



468 I. Karatzas, C. Kardaras

Here e and f are two independent, exponentially distributed random variables. The
class of portfolios is easily identified with all (p, q) ∈ C0 = R+ × [0,1]. Since X1

1 =
S1

1 − S1
0 = e > 0, P-a.s., we have that NA fails for this (unconstrained) market. In

other words, for the non-constrained case there can be no ESMM.
Consider now the non-random constraint set C = {(p, q) ∈ C0 | p2 ≤ q}. Observe

that cone(C) = R+ × R and thus no ESMMC exists; otherwise, an ESMM would
exist already for the unconstrained case. We shall, nevertheless, show in the following
paragraph that NFLVRC holds for this constrained market.

For a sequence of portfolios πn ≡ (pn, qn)n∈N in C, the wealth on day one will
be W

πn

1 = 1 − qn + qnf + pne; obviously, P[Wπn

1 ≥ 1 − qn] = 1, since 1 − qn is
the essential infimum of W

πn

1 . It then turns out that in order for (πn)n∈N to generate
a FLVR we must require qn ↓ 0 and P[Wπn

1 > 1 + ε] > ε for some ε > 0. Observe
that we must have qn > 0, otherwise, pn = 0 as well (because of the constraints),
and then W

πn

1 = 1. Now, because of the constraints, again we have |pn| ≤ √
qn; since

P[e > 0] = 1, the sequence of strategies ξn := (
√

qn, qn) will generate a sequence of

wealth processes (Wξn)n∈N that will dominate (Wπn)n∈N, i.e., P[Wξn

1 ≥ W
πn

1 ] = 1;
this will, of course, mean that (Wξn)n∈N is also a FLVR. We should then have
P[1 − qn + √

qne + qnf > 1 + ε] > ε; using qn > 0 and some algebra we get
P[e >

√
qn(1 − f ) + ε/

√
qn] > ε. Since (qn)n∈N goes to zero, this would imply that

P[e > M] ≥ ε for all M > 0, which is clearly ridiculous. We conclude that NFLVRC

holds, although as we have seen MC = ∅.

What can we say in the case of convex—but non necessarily conic—constraints?
It will turn out that for the equivalent of the FTAP, the assumptions from both the
economic and the mathematical side should be relaxed. The relevant economic notion
will be NUPBRC and the mathematical one will be the concept of supermartingale
deflators—more on this in Sects. 4.4 and 4.5.

4.3.2 Describing free lunches in terms of predictable characteristics

The explanation why “free lunches” are considered economically unsound stems
from the following reasoning: if they exist in a market, many agents will try to take
advantage of them; then, usual supply-and-demand arguments will imply that some
correction on the prices of the assets will occur and remove these kinds of opportu-
nities. This is a very reasonable line of thought, provided that one can discover the
free lunches that are present. But is it true that, given a specific model, one is in a
position to decide whether free lunches exist or not? In other words, mere knowledge
of the existence of a free lunch may not be enough to carry the previous economic
argument—one should be able to construct a free lunch. This goes somewhat hand in
hand with the fact that the FTAP is a pure existence result, in the sense that it provides
knowledge that some equivalent (super)martingale measure exists; in some cases one
might be able to spot it, in other cases might not.

A natural question arises: when free lunches exist, is there a way to construct them
from the predictable characteristics of the model? Here is an answer: if NUPBRC

fails then an UPBR can be constructed using the triplet (B,C,η). The detailed state-
ment will be given in Sect. 4.6, but let us say here that the deterministic positive
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functional Ψ of Remark 3.16 is such that on the event {ΨT (B,C,η) = ∞} NUPBRC

fails (and then we can construct free lunches using the predictable characteristics),
while on {ΨT (B,C,η) < ∞} NUPBRC holds. As a result, we see that NUPBRC is
somehow a pathwise notion.

What we described in the last paragraph for the NUPBRC condition does not apply
to the NAC condition, as we demonstrate in Example 4.7.

Example 4.6 (Arbitrage for the three-dimensional Bessel Process) Consider a one-
stock market on the finite time horizon [0,1], with S0 = 1 and S satisfying the
stochastic differential equation dSt = (1/St )dt + dβt . Here β is a standard, one-
dimensional Brownian motion, so S is the three-dimensional Bessel process. Writing
dSt/St = (1/S2

t )dt + (1/St )dβt =: dXt and using Example 3.17, the numéraire port-
folio for the unconstrained case exists and is ρ = 1.

This market admits arbitrage. To wit, with the notation

Φ(x) =
∫ x

−∞
e−u2/2

√
2π

du, F (t, x) = Φ(x/
√

1 − t)

Φ(1)
, for x ∈ R and 0 < t < 1,

consider the process Wt = F(t, St ). Obviously W0 = 1, W > 0 and

dWt = ∂F

∂x
(t, St )dSt , and thus

dWt

Wt

=
[

1

F(t, St )

∂F

∂x
(t, St )

]
dSt ,

by Itô’s formula. We conclude that W = Wπ for πt := (∂ logF/∂x)(t, St ), and that
Wπ

1 = 1/Φ(1) > 1, i.e., there exists arbitrage in the market.
We remark that there is also an indirect way to show that arbitrage exists using

the FTAP, proposed by Delbaen and Schachermayer [13]; there, one has to further
assume that the filtration F is the one generated by S (equivalently, by β).

This is one of the rare occasions when one can compute the arbitrage portfo-
lio concretely. We were successful in this because of the very special structure of
the three-dimensional Bessel process; every model has to be attacked in a different
way, and there is no general theory that will spot the arbitrage. Nevertheless, we re-
fer the reader to Fernholz, Karatzas, and Kardaras [16] and Fernholz and Karatzas
[15] for many examples of arbitrage relative to the market portfolio (whose wealth
process follows exactly the index

∑d
i=1 Si in proportion to the initial investment).

This is done under conditions on the market structure that are easy to check, and are
descriptive—as opposed to normative, such as ELMM.

We now show that there cannot exist a deterministic positive functional Ψ that
takes as its arguments triplets of predictable characteristics such that NA holds, when-
ever P[ΨT (B,C,η) < ∞] = 1. Actually, we shall construct in the next paragraph two
stock-price processes on the same stochastic basis and with the same predictable char-
acteristics, and such that NA fails with respect to the one but holds with respect to the
other.

Example 4.7 (No predictable characterization of arbitrage) Assume that (Ω,F ,P)

is rich enough to accommodate two independent standard one-dimensional Brownian
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motions β and γ ; the filtration will be the (usual augmentation of the) one generated
by the pair (β, γ ). We work in the time-horizon [0,1]. Let R be the three-dimensional
Bessel process with R0 = 1 and dRt = (1/Rt )dt + dβt . As R is adapted to the fil-
tration generated by β , it is independent of γ . Start with the market described by
the stock-price S = R; the triplet of predictable characteristics (B,C,η) consists of
Bt = Ct = ∫ t

0 (1/Ru)
2 du and η = 0. According to Example 4.6, NA fails for this

market.
With the same process R , define now a new stock Ŝ following the dynamics

dŜt /Ŝt = (1/Rt )
2dt + (1/Rt )dγt with Ŝ0 = 1. The new dynamics involve γ , so Ŝ

is not a three-dimensional Bessel process; nevertheless, it has exactly the same triplet
of predictable characteristics as S. But now NA holds for the market that consists of
the stock Ŝ. We can actually construct an ELMM, since the independence of R and
γ implies that the exponential local martingale Z := E(−(1/R) · γ ) is a true martin-
gale; Lemma 4.8 below will show this. We can then define Q ∼ P via dQ/dP = Z1,
and Girsanov’s theorem will imply that Ŝ is the stochastic exponential of a Brownian
motion under Q—thus, a true martingale.

Lemma 4.8 On a stochastic basis (Ω,F ,F = (Ft )t∈R+ ,P) let β be a standard one-
dimensional F-Brownian motion and α a predictable process, independent of β , that
satisfies

∫ t

0 |αu|2du < ∞, P-a.s. Then the exponential local martingale Z = E(α · β)

satisfies E[Zt ] = 1, i.e., is a true martingale on [0, t].

Proof We begin by enlarging the filtration to G with Gt := Ft ∨ σ(αt ; t ∈ R+), i.e.,
we throw the whole history of α up to the end of time in F. Since α and β are
independent, it is easy to see that β is a G-Brownian motion. Of course, α is a
G-predictable process and thus the stochastic integral α · β is the same seen un-
der F or G. Then, with An := {n − 1 ≤ ∫ t

0 |αu|2 du < n} ∈ G0 and in view of
E[Zt |An] = 1 (since on An the quadratic variation of α · β is bounded by n), we
have E[Zt ] = E[E[Zt |G0] ] = ∑∞

n=1 E[Zt |An ]P[An] = 1. �

4.3.3 Connection with utility maximization

A central problem of mathematical finance is the maximization of expected util-
ity from terminal wealth of an economic agent who can invest in the market. The
agent’s preferences are described by a utility function: namely, a concave and strictly
increasing function U : (0,∞) �→ R. We also define U(0) ≡ U(0+) by continuity.
Starting with initial capital w > 0, the objective of the investor is to find a portfolio
ρ̂ ≡ ρ̂(w) ∈ ΠC such that

E
[
U

(
wW

ρ̂
T

)] = sup
π∈ΠC

E
[
U

(
wWπ

T

)] =: u(w). (4.1)

Probably the most important example is the logarithmic utility function U(w) =
logw. Due to its special structure, when the optimal portfolio exists it does not depend
on the initial capital, nor on the given time-horizon T (“myopia”). We saw in Sect. 3.7
that, under a suitable reformulation of log-optimality, the two notions of log-optimal
and numéraire portfolio are equivalent.
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We consider here utility maximization from terminal wealth that is constrained to
be positive (in other words, U(w) = −∞ for w < 0). This problem has a long history;
it has been solved in a very satisfactory manner for general semimartingale models
using previously-developed ideas of martingale duality by Kramkov and Schacher-
mayer [30, 31], where we send the reader for further details.

A common assumption in this context is that the class of equivalent local martin-
gale measures is non-empty, i.e., that NFLVR holds. (Interestingly, in [26] this as-
sumption is not made.) The three-dimensional Bessel process of Example 4.6 shows
that this is not necessary; indeed, since the numéraire portfolio ρ = 1 exists and
E[logS1] < ∞, Proposition 3.19 shows that ρ is the solution to the log-utility op-
timization problem. Nevertheless, we have seen that NFLVR fails for this market.
To wit: an investor with log-utility will optimally choose to hold the stock and, even
though arbitrage opportunities exist in the market, the investor’s optimal choice is
clearly not an arbitrage.

In the mathematical theory of economics, the equivalence of no free lunches,
equivalent martingale measures, and the existence of optimal investments for utility-
based preferences is something of a “folklore theorem”. Theorem 4.4 deals with the
equivalence of the first two of these conditions, but the three-dimensional Bessel
process example shows that this does not completely cover minimal conditions for
utility maximization; in that example, although NA fails, the numéraire and log-
optimal portfolios do exist. In Theorem 4.12 we shall see that existence of the
numéraire portfolio is equivalent to the NUPBR condition and (in Sect. 4.7) that
NUPBR is actually the minimal “no free lunch”-type notion needed to ensure the ex-
istence of solution to any utility maximization problem. In a loose sense (to become
precise there) the problem of maximizing expected utility from terminal wealth is
solvable for a rather large class of utility functions if and only if the special case of
the logarithmic utility problem has a solution—which is exactly when NUPBR holds.
Accordingly, the existence of an equivalent (local) martingale measure will have to be
substituted by the weaker requirement, the existence of a supermartingale deflator,
which is the subject of the next subsection.

4.4 Supermartingale deflators

In the spirit of Theorem 4.4, we should now like to find a mathematical condition
equivalent to NUPBR. The next concept, closely related to that of equivalent super-
martingale measures but weaker, will be exactly what we shall need.

Definition 4.9 The class of equivalent supermartingale deflators is defined as

DC := {
D ≥ 0 | D0 = 1, DT > 0, and DWπ is supermartingale ∀π ∈ ΠC

}
.

If there exists an element D∗ ∈ DC of the form D∗ ≡ 1/Wρ for some ρ ∈ ΠC , we
call D∗ a tradeable supermartingale deflator.

If a tradeable supermartingale deflator D∗ ≡ 1/Wρ exists then the relative wealth
process Wπ/Wρ is a supermartingale for all π ∈ ΠC, i.e., ρ is the numéraire port-
folio. Thus, a tradeable supermartingale deflator exists if and only if a numéraire
portfolio ρ exists and W

ρ
T < ∞, P-a.s.; and then it is unique.
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An equivalent supermartingale measure Q generates an equivalent supermartin-
gale deflator through the positive martingale Dt = (dQ/dP)|Ft

. Then we have MC ⊆
DC (for the class MC of equivalent C-supermartingale measures of Definition 4.3);
thus, MC �= ∅ ⇒ DC �= ∅. In general, the elements of DC are just supermartingales,
not martingales, and the inclusion MC ⊆ DC is strict; more importantly, the implica-
tion DC �= ∅ ⇒ MC �= ∅ does not hold, as we now show.

Example 4.10 Consider the three-dimensional Bessel process of Example 4.6 on the
finite time-horizon [0,1]. Since ρ = 1 is the numéraire portfolio, D∗ = 1/S is a trade-
able supermartingale deflator, so DC �= ∅. As we have already seen, NA fails; thus,
we must have MC = ∅.

The set DC of equivalent supermartingale deflators appears as the range of opti-
mization in the “dual” of the utility maximization problem (4.1) in [30]. It has ap-
peared before in some generalization of Kramkov’s optional decomposition theorem
by Stricker and Yan [38], as well as in [36] under the name “martingale densities” (in
both of these works, D consisted of positive local martingales).

As we shall see soon, it is the condition DC �= ∅, rather than MC �= ∅, that is
needed in order to solve the utility maximization problem (4.1).

The existence of an equivalent supermartingale deflator has some consequences
for the class of admissible wealth processes.

Proposition 4.11 If DC �= ∅ then for every π ∈ ΠC the wealth process Wπ is a
semimartingale up to time T (for this concept consult Remark 10.3 in Appendix 2).
In particular, limt→∞ Wπ

t exists on {T = ∞}.

Proof Pick D ∈ DC and π ∈ ΠC. Since DWπ is a positive supermartingale,
Lemma 10.2 gives that DWπ is a semimartingale up to T . Since D is also a pos-
itive supermartingale with DT > 0, 1/D is a semimartingale up to T , again by
Lemma 10.2. It follows that Wπ = (1/D)DWπ is a semimartingale up to T . �

In order to complete the discussion, we mention that if a tradeable supermartin-
gale deflator D∗ exists, Jensen’s inequality and the supermartingale property of
DWρ ≡ D/D∗ for all D ∈ DC imply E[− logD∗

T ] = infD∈DC
E[− logDT ]. This can

be viewed as an optimality property of the tradeable supermartingale deflator, dual to
log-optimality of the numéraire portfolio, as discussed in Sect. 3.7. We can also con-
sider it as a minimal reverse relative entropy property of D∗ in the class DC. Let us
explain: for every element D ∈ DC that is actually a uniformly integrable martingale,
consider the probability measure Q defined by Q(A) = E[DT IA]; then, the quantity
H(P | Q) := E

Q[D−1
T log(D−1

T )] = E[− logDT ] is the relative entropy of P with re-
spect to Q. In general, even when D is not a martingale, we could regard E[− logDT ]
as the relative entropy of P with respect to D. The qualifier “reverse” comes from the
fact that one usually considers minimizing the entropy of another equivalent proba-
bility measure Q with respect to the original P (so-called minimal entropy measure).
For further details and history we refer the reader to Example 7.1 of Karatzas and
Kou [24], and [37] where the minimal reverse relative entropy property of the “mini-
mal martingale measure” for continuous asset-price processes is discussed, as well as
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to [19] where a general discussion of minimal distance martingale measures is made
(of which the minimal reverse entropy martingale measure is a special case).

4.5 The second main result

Here is our second main result, which places the numéraire portfolio in the context
of arbitrage.

Theorem 4.12 For a financial model described by the stock-price process S and the
predictable closed convex constraints C, the following are equivalent:

(1) The numéraire portfolio exists and W
ρ
T < ∞.

(2) The set DC of equivalent supermartingale deflators is non-empty.
(3) The NUPBR condition holds.

The implication (1) ⇒ (2) is trivial: (Wρ)−1 is an element of DC (observe that we
need W

ρ
T < ∞ to get (W

ρ
T )−1 > 0, as required in the definition of DC).

For the implication (2) ⇒ (3), start by assuming that DC �= ∅ and pick D ∈ DC.
We wish to show that the collection (Wπ

T )π∈ΠC
, the terminal values of positive wealth

processes with Wπ
0 = 1 is bounded in probability. Since DT > 0, this is equiva-

lent to showing that the collection {DT Wπ
T | π ∈ ΠC} is bounded in probability.

But since every process DWπ for π ∈ ΠC is a positive supermartingale, we have
P[DT Wπ

T > a] ≤ a−1
E[DT Wπ

T ] ≤ a−1
E[D0W

π
0 ] = a−1, for all a > 0; this last esti-

mate does not depend on π ∈ ΠC, and we are done.
Implication (3) ⇒ (1) is much harder to prove. One has to analyze what happens

when the numéraire portfolio fails to exist; we do this in the next subsection.
Theorem 4.12 provides the equivalent of the FTAP when we only have convex, but

not necessarily conic, constraints. Since the existence of a numéraire portfolio ρ with
W

ρ
T < ∞ is equivalent to ΨT (B,C,η) < ∞, according to Remark 3.16, we obtain

also a partial answer to our second question, regarding the characterization of free
lunches in terms of predictable characteristics from Sect. 4.3.2; the full answer will
be given in the next Sect. 4.6. Finally, the question on utility maximization posed at
Sect. 4.3.3 will be tackled in Sect. 4.7.

Remark 4.13 Conditions (2) and (3) of Theorem 4.12 remain invariant by an equiv-
alent change of probability measure. Thus, existence of the numéraire portfolio re-
mains unaffected also, although the numéraire portfolio itself will change. Though a
pretty reasonable conjecture to be made at the outset, this does not seem to follow
directly from the definition of the numéraire portfolio.

The above fail if we only consider absolutely continuous changes of measure
(unless S is continuous). One would guess that NUPBR should hold, but non-
equivalent changes of probability measure might enlarge the class of admissible
wealth processes, since now the positivity condition for wealth processes is more
easily satisfied—in effect, the natural constraint set C0 can be larger. Consider, for
example, a finite time-horizon case where, under P, X is a driftless compound Pois-
son process and {−1/2,1/2} is exactly the support of ν. Here, C0 = [−2,2], and X
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itself is a martingale. Now consider the simple absolutely continuous change of mea-
sure that transforms the jump measure to ν1(dx) := I{x>0}ν(dx); then, C0 = [−2,∞)

and, of course, NUIP fails.

Remark 4.14 Theorem 4.12, together with Proposition 4.11, implies that, under
NUPBRC, all wealth processes Wπ for π ∈ ΠC are semimartingales up to infin-
ity. Thus, under NUPBRC, the assumption about the existence of limt→∞ Wπ

t on
{T = ∞}, needed for the NA, and the NFLVR conditions in Definition 4.1 are super-
fluous.

4.6 Consequences of non-existence of the numéraire portfolio

In order to finish the proof of Theorem 4.12, we need to describe what goes wrong
when the numéraire portfolio fails to exist. This can happen in two ways. Firstly, the
set {I ∩ Č �= ∅} may not have zero P ⊗ G-measure; in this case, Proposition 3.10
shows that one can construct an unbounded increasing profit, the most egregious
form of arbitrage. Secondly, when (P ⊗ G)({I ∩ Č �= ∅}) = 0, the constructed pre-
dictable process ρ can fail to be X-integrable (up to time T ). The next definition
prepares the ground for Proposition 4.16, which describes what happens in this latter
case.

Definition 4.15 Consider a sequence (fn)n∈N of random variables. Its limit superior
in the probability sense, P-lim supn→∞ fn, is defined as the essential infimum of the
collection {g ∈ F | limn→∞ P[fn ≤ g] = 1}.

It is obvious that the sequence (fn)n∈N of random variables is unbounded in prob-
ability if and only if P-lim supn→∞ |fn| = +∞ with positive probability.

Proposition 4.16 Assume that the predictable set {I ∩ Č �= ∅} has zero P ⊗ G-
measure and let ρ be the predictable process constructed in Theorem 3.15. Pick any
sequence (θn)n∈N of [0,1]-valued predictable processes with limn→∞ θn = I hold-
ing P ⊗ G-almost everywhere and such that ρn := θnρ has bounded support and is
X-integrable for all n ∈ N. Then W

ρ

T := P-lim supn→∞ W
ρn

T is a (0,+∞]-valued
random variable and does not depend on the choice of the sequence (θn)n∈N. On
{(ψρ · G)T < +∞}, the random variable W

ρ

T is an actual limit in probability and

{
W

ρ

T = +∞} = {(
ψρ · G)

T
= +∞};

in particular, P[Wρ

T = +∞ ] > 0 if and only if ρ fails to be X-integrable up to T .

The above result says, in effect, that closely following a numéraire portfolio which
is not X-integrable up to time T , one can make arbitrarily large gains with fixed, pos-
itive probability. There are many ways to choose the sequence (θn)n∈N; a particular
example is θn := IΣn with Σn := {(ω, t) ∈ [[0, T ∧ n]] | |ρ(ω, t)| ≤ n}.

Proposition 4.16 is proved in Sect. 8; it answers in a definitive way the question
regarding the description of free lunches in terms of predictable characteristics, raised
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in Sect. 4.3.2: When NUPBRC fails (equivalently, when the numéraire portfolio fails
to exist, or exists but P[Wρ

T = ∞] > 0), there is a way to construct the unbounded
profit with bounded risk (UPBR) using knowledge of the triplet of predictable char-
acteristics.

Proof of Theorem 4.12 Assuming Proposition 4.16, we are now in a position to show
the implication (3) ⇒ (1) of Theorem 4.12 and complete its proof. Suppose that
the numéraire portfolio fails to exist. Then we either we have opportunities for un-
bounded increasing profit, in which case NUPBR certainly fails; or the predictable
process ρ of Theorem 3.15 exists but is not X-integrable up to time T , in which case
Proposition 4.16 provides an UPBR. �

Remark 4.17 In the context of Proposition 4.16, suppose that {I ∩ Č �= ∅} has
zero P ⊗ G-measure. The failure of ρ to be X-integrable up to time T can hap-
pen in two ways. Start by defining τ := inf{t ∈ [0, T ] | (ψρ · G)t = +∞} and
τn := inf{t ∈ [0, T ] | (ψρ · G)t ≥ n}, n ∈ N. We consider two cases.

First, suppose τ > 0 and (ψρ · G)τ = +∞; then τn < τ for all n ∈ N and τn ↑ τ .
By using the sequence ρn := ρ I[[0,τn]] it is easy to see that limn→∞ W

ρn
τ = +∞

almost surely—this is because {(Wρ
t )−1, 0 ≤ t < τ } is a supermartingale. An ex-

ample where this happens in finite time is when the returns process X satisfies
dXt = (1 − t)−1/2dt + dβt , where β is a standard one-dimensional Brownian motion.
Then ρt = (1 − t)−1/2 and thus (ψρ · G)t = ∫ t

0 (1 − u)−1du , which gives τ ≡ 1 .
With the notation set-up above, let us now give an example with (ψρ · G)τ < +∞.

Actually, we shall only time-reverse the example we gave before and show that in this
case τ ≡ 0. To wit, take the stock-returns process now to be dXt = t−1/2 dt + dβt ;
then ρt = t−1/2 and (ψρ · G)t = ∫ t

0 u−1 du = +∞ for all t > 0 , so that τ = 0. In
this case we cannot invest in ρ as before in a “forward” manner, because it has a
“singularity” at t = 0, and we cannot take full advantage of it. This is basically what
makes the proof of Proposition 4.16 non-trivial.

In the case of a continuous-path semimartingale X without portfolio constraints
(as the one described in this example), Delbaen and Schachermayer [11] and Lev-
ental and Skorohod [32] show that one can actually create “instant arbitrage”, i.e., a
non-constant wealth process that never falls below its initial capital (almost the defi-
nition of an increasing unbounded profit, but weaker, since the wealth process is not
assumed to be increasing). In the presence of jumps, it is an open question whether
one can still construct this instant arbitrage—we could not.

4.7 Application to utility optimization

Here we tackle the question that we raised in Sect. 4.3.3. We show that NUPBR is the
minimal condition that allows one to solve the utility maximization problem (4.1).

Remark 4.18 The optimization problem (4.1) makes sense only if u(w) < ∞. Since
U is concave, if u(w) < +∞ for some w > 0 then u(w) < +∞ for all w > 0 and u is
continuous, concave, and increasing. When u(w) = ∞ holds for some (equivalently,
all) w > 0, there are two cases. Either the supremum in (4.1) is not attained, so there is
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no solution; or, in case there exists a portfolio with infinite expected utility, concavity
of U implies that there will be infinitely many of them.

We begin with the negative result: when NUPBRC fails, (4.1) cannot be solved.

Proposition 4.19 Assume that NUPBRC fails. Then, for any utility function U , the
corresponding utility maximization problem either does not have a solution, or has
infinitely many.

More precisely: If U(∞) = +∞ then u(w) = +∞ for all w > 0, so we either have
no solution (when the supremum is not attained) or infinitely many of them (when the
supremum is attained); whereas if U(∞) < +∞ , there is no solution.

Proof Since NUPBRC fails, pick an ε > 0 and a sequence (πn)n∈N of elements of
ΠC such that, with An := {Wπn

T ≥ n}, we have P[An] ≥ ε for all n ∈ N.
If U(∞) = +∞ then it is obvious that, for all w > 0 and n ∈ N, we have u(w) ≥

E[U(wW
πn

T )] ≥ εU(wn); thus, u(w) = +∞ and we obtain the result stated in the
proposition in view of Remark 4.18.

Now suppose U(∞) < ∞; then U(w) ≤ u(w) ≤ U(∞) < ∞ for all w > 0.
Furthermore, u is also concave, thus continuous. Pick any w > 0, suppose that
π ∈ ΠC is optimal for U with initial capital w, and observe that u(w + n−1) ≥
E[U(wWπ

T + n−1W
πn

T )] ≥ E[U(wWπ
T + IAn)], as well as

U
(
wWπ

T + IAn

) = U
(
wWπ

T

)
IΩ\An + U

(
wWπ

T + 1
)
IAn.

Pick M > 0 large enough so that P[wWπ
T ≤ M] ≥ 1 − ε/2; then, for 0 < y ≤ M the

concavity of U gives U(y + 1) − U(y) ≥ U(M + 1) − U(M) =: b . Therefore,

U
(
wWπ

T + 1
) ≥ (

U
(
wWπ

T

) + b
)
I{wWπ

T ≤M} + U
(
wWπ

T

)
I{wWπ

T >M}.

Combining the two previous estimates, we get

U
(
wWπ

T + IAn

) ≥ U
(
wWπ

T

) + b IAn∩{wWπ
T ≤M}.

Since P[An] ≥ ε , we get P[An ∩ {wWπ
T ≤ M}] ≥ ε/2 , and setting a := bε/2 we

obtain u(w + n−1) ≥ E[U(wWπ
T + IAn)] ≥ E[U(wWπ

T )] + a = u(w) + a for all
n ∈ N, which contradicts the continuity of u(·). �

Having discussed what happens when NUPBRC fails, let us now assume that it
holds. We shall assume a little more structure on the utility function under consider-
ation, namely, that it is continuously differentiable and satisfies the Inada conditions
U ′(0) = +∞ and U ′(+∞) = 0.

The NUPBRC condition is equivalent to the existence of a numéraire portfolio ρ.
Since all wealth processes become supermartingales when divided by Wρ , we con-
clude that the change of numéraire that utilizes Wρ as a benchmark produces a market
for which the original P is a supermartingale measure (see [12] for this “change of
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numéraire” technique). In particular, NFLVRC holds and the “optional decomposi-
tion under convex constraints” results of [17] allow us to write down the superhedg-
ing duality

inf
{
w > 0 | ∃ π ∈ ΠC with wWπ

T ≥ H
} = sup

D∈DC

E[DT H ],

valid for any positive, FT -measurable random variable H . This “bipolar” relationship
then implies that the utility optimization problem admits a solution (when its value is
finite). We send the reader to the papers [30, 31] for more information.

4.8 A word on the additive model

All the results stated up to now hold also when the stock-price processes Si are not
necessarily positive semimartingales. Indeed, suppose that we start with initial prices
S0, introduce Y := S − S0, and define the admissible (discounted) wealth processes
class to be generated by strategies θ ∈ P(Rd) via W = 1+θ ·S = 1+θ ·Y , where we
force W > 0, W− > 0. Here θ is the number of shares of stocks in our portfolio. Then,
with π := (1/W−)θ , it follows that we can write W = E(π ·Y). We do not necessarily
have �Y > −1 anymore, but this was never used anywhere; the important thing is
that admissibility implies π
�Y > −1. Observe that now π does not have a nice
interpretation as it had in the case of the multiplicative model.

A final note on constraints. One choice is to require θ ∈ W−C, which is completely
equivalent to π ∈ C. A more natural choice would be to enforce them on investment
proportions, i.e., to require (θ iSi−/W−)1≤i≤d ∈ C, in which case we get π ∈ Ĉ, where
Ĉ := {x ∈ R

d | (xiSi−)1≤i≤d ∈ C} is predictable.

5 Proof of Proposition 3.10 on the NUIP condition

5.1 If {I ∩ Č �= ∅} is P ⊗ G-null then NUIP holds

Let us suppose that π is a portfolio with unbounded increasing profit; we shall show
that {I∩Č �= ∅} is not P⊗G-null. By definition, then {π ∈ Č} has full P⊗G-measure,
so we wish to prove that {π ∈ I} has strictly positive P ⊗ G-measure.

Now Wπ has to be a non-decreasing process, which means that the same holds
for π · X. We also have π · X �= 0 with positive probability. This means that the
predictable set {π /∈ N} has strictly positive P ⊗ G-measure, and it will suffice to
show that properties (1–3) of Definition 3.9 hold P ⊗ G-a.e.

Because π · X is increasing, we get I{π
x<0} ∗ μ = 0, so that ν[π
x < 0] = 0,
P ⊗ G-a.e. In particular, π · X is of finite variation, so we must have π · Xc = 0, and
this translates into π
c = 0, P ⊗ G-a.e. For the same reason, one can decompose

π · X = (
π · B − [

π
xI{|x|≤1}
] ∗ η

) + [
π
x

] ∗ μ. (5.1)

The last term [π
x] ∗ μ in this decomposition is a pure-jump increasing process,
while for the sum of the terms in parentheses we have from (2.4)

�
(
π · B − [

π
xI{|x|≤1}
] ∗ η

) =
(

π
b −
∫

π
xI{|x|≤1}ν(dx)

)
�G = 0.
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It follows that the term in parentheses on the right-hand side of (5.1) is the continuous
part of π · X (when seen as a finite variation process) and thus has to be increasing.
This translates into the requirement π
b − ∫

π
xI{|x|≤1}ν(dx) ≥ 0, P ⊗ G-a.e., and
ends the proof.

5.2 The set-valued process I is predictable

In proving the other half of Proposition 3.10, we need to select a predictable process
from the set {I ∩ Č �= ∅}. For this, we shall have to prove that I is a predictable
set-valued process; however, I is not closed, and closedness of sets is crucial when
trying to apply measurable selection results. For this reason we have to go through
some technicalities first.

Given a triplet (b, c, ν) of predictable characteristics and a > 0, define Ia to be
the set-valued process such that (1–3) of Definition 3.9 hold, as well as

ξ
b +
∫

ξ
x

1 + ξ
x
I{|x|>1}ν(dx) ≥ 1

a
. (5.2)

The following lemma sets forth properties of these sets that we shall find useful.

Lemma 5.1 With the previous definition we have:

(1) Ia is increasing in a > 0; we have Ia ⊆ I and I = ⋃
a>0 Ia . In particular, I ∩

Č �= ∅ if and only if Ia ∩ Č �= ∅ for all large enough a > 0.
(2) For all a > 0, Ia takes values in closed and convex subsets of R

d .

Proof In the course of the proof, we suppress dependence of quantities on (ω, t).
Because of conditions (1–3) of Definition 3.9, the left-hand side of (5.2) is well-

defined (the integrand is positive since ν[ξ
x < 0] = 0) and has to be positive. In
fact, for ξ ∈ I, it has to be strictly positive, otherwise ξ ∈ N. The fact that Ia is
increasing for a > 0 is trivial, and part (1) of this lemma follows.

For part (2), we show first that Ia is closed. Observe that the set
{ξ ∈ R

d | ξ
c = 0 and ν[ξ
x < 0] = 0} is closed in R
d . For ξ in this last set,

x �→ ξ
x is non-negative for all x ∈ R
d in a set of full ν-measure. For a sequence

(ξn)n∈N in Ia with limn→∞ ξn = ξ , Fatou’s lemma gives
∫

ξ
xI{|x|≤1}ν(dx) ≤ lim inf
n→∞

∫
ξ

n xI{|x|≤1}ν(dx) ≤ lim inf

n→∞
(
ξ

n b

) = ξ
b,

so that ξ satisfies (3) of Definition 3.9 also. The measure I{|x|>1}ν(dx) (the “large
jumps” part of the Lévy measure ν) is finite, and bounded convergence gives

ξ
b +
∫

ξ
x

1 + ξ
x
I{|x|≥1}ν(dx) = lim

n→∞

{
ξ

n b +

∫
ξ

n x

1 + ξ

n x

I{|x|≥1}ν(dx)

}
≥ a−1.

This establishes that Ia is closed. Convexity follows from the fact that the function
x �→ x/(1 + x) is concave on (0,∞). �
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In view of I = ⋃
n∈N

In and Lemma 9.3, in order to prove predictability of I we
only have to prove predictability of Ia . To this end, we define the following real-
valued functions, with arguments in (Ω × R+) × R

d (once again, suppressing their
dependence on (ω, t) ∈ [[0, T ]]):

z1(p) = p
c, z2(p) =
∫

((p
x)−)2

1 + ((p
x)−)2
ν(dx),

zn
3(p) = p
b −

∫
p
xI{n−1<|x|≤1}ν(dx), for all n ∈ N, and

z4(p) = p
b +
∫

p
x

1 + p
x
I{|x|>1}ν(dx).

Observe that all these functions are predictably measurable in (ω, t) ∈ Ω × R+ and
continuous in p (follows from applications of the dominated convergence theorem).
In a limiting sense, consider formally z3(p) ≡ z∞

3 (p) = p
b − ∫
p
xI{|x|≤1}ν(dx);

observe though that this function might not be well-defined: both the positive and
negative parts of the integrand might have infinite ν-integral. Consider also the se-
quence Aa

n := {p ∈ R
d | z1(p) = 0, z2(p) = 0, zn

3(p) ≥ 0, z4(p) ≥ a−1} of set-valued
processes for n ∈ N, of which the “infinite” version coincides with Ia , since Ia ≡
Aa∞ := {p ∈ R

d | z1(p) = 0, z2(p) = 0, z3(p) ≥ 0, z4(p) ≥ a−1}. Because z2(p) = 0,
the function z3 is well-defined (though not necessarily finite, since it can equal −∞).
In any case, for any p with z2(p) = 0 we have ↓ − limn→∞ zn

3(p) = z3(p); so the
sequence (Aa

n)n∈N is decreasing, and ↓ − limn→∞ Aa
n = Ia . But each Aa

n is closed
and predictable (refer to Lemmas 9.3 and 9.4), and thus so is Ia .

Remark 5.2 Since {I ∩ Č �= ∅} = ⋃
n∈N

{In ∩ Č �= ∅} and the random set-valued
processes In and Č are closed and predictable, Appendix 1 shows that the set
{I ∩ Č �= ∅} is predictable.

5.3 NUIP implies that {I ∩ Č �= ∅} is P ⊗ G-null

We are now ready to finish the proof of Proposition 3.10. Let us suppose that
{I ∩ Č �= ∅} is not P ⊗ G-null; we shall construct an unbounded increasing profit.

Since I = ⋃
n∈N

({p ∈ R
d | |p| ≤ n} ∩ In), where In is the set-valued process of

Lemma 5.1, there exists n ∈ N such that the convex, closed, and predictable set-
valued process Bn := {p ∈ R

d | |p| ≤ n} ∩ In ∩ Č has (P ⊗ G)({Bn �= ∅}) > 0 . From
Theorem 9.5, there exists a predictable process π such that π(ω, t) ∈ Bn(ω, t) when
Bn(ω, t) �= ∅ , and π(ω, t) = 0 if Bn(ω, t) = ∅ . This π is bounded, so π ∈ ΠC. The
reasoning of Sect. 5.1, now “in reverse”, gives that π · X is non-decreasing; the same
is then true of Wπ . Thus, we must have P[Wπ∞ > 1] > 0, otherwise π · X ≡ 0, which
is impossible since (P ⊗ G)({π /∈ N}) > 0, by construction.

6 Proof of the main Theorem 3.15

We saw in Lemma 3.5 that if the numéraire portfolio ρ exists it has to satisfy
rel(π | ρ) ≤ 0 pointwise, P ⊗ G-a.e. In order to find necessary and sufficient con-
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ditions for the existence of a (predictable) process ρ that satisfies this inequality, it
makes sense first to consider the corresponding static, deterministic problem.

6.1 The exponential Lévy market case

Lévy processes correspond to constant, deterministic triplets of characteristics with
respect to the natural time flow G(t) = t , so we shall take in this subsection X to be
a Lévy process with deterministic Lévy triplet (b, c, ν); this means Bt = bt , Ct = ct

and η(dt,dx) = ν(dx)dt in the notation of Sect. 2.1. We also take C to be a closed
convex subset of R

d ; recall that C ⊆ C0, where C0 := {π ∈ R
d | ν[π
x < −1] = 0}.

Note that I and C are here both independent of ω and t .
The following result is the deterministic analogue of Theorem 3.15.

Lemma 6.1 Let (b, c, ν) be a Lévy triplet and C a closed convex subset of R
d . Then

the following are equivalent:

(1) I ∩ Č = ∅.
(2) There exists a unique vector ρ ∈ C ∩ N⊥ with ν[ρ
x ≤ −1] = 0 such that

rel(π | ρ) ≤ 0 holds for all π ∈ C.

If the Lévy measure ν integrates the log, the vector ρ is given as ρ =
arg maxπ∈C∩N⊥ g(π). In general, ρ is the limit of the optimizers of a sequence of
problems in which ν is replaced by a sequence of approximating measures.

We have already shown that if (1) fails then (2) fails as well (actually, we have
argued it for the general semimartingale case; see Remark 3.11). The proof of the
implication (1) ⇒ (2) is quite long—it can be found in [29], Sect. 4, where free
lunches for exponential Lévy models are studied in detail.

6.2 Integrability of the numéraire portfolio

We are close to the proof of our main result. We start with a characterization of
X-integrability that the predictable process ρ, our candidate for the numéraire port-
folio, must satisfy. The following general result is proved in [7].

Theorem 6.2 Let X be a d-dimensional semimartingale whose triplet of pre-
dictable characteristics is (b, c, ν), relative to the canonical truncation function
and some operational clock G. A process ρ ∈ P(Rd) is X-integrable if and only
if (|ψ̂ρ

i | · G)t < ∞, i = 1,2,3, for all t ∈ [[0, T ]] holds for the predictable processes

ψ̂
ρ
1 := ρ
cρ, ψ̂

ρ
2 :=

∫ (
1 ∧ ∣∣ρ
x

∣∣2)
ν(dx), and

ψ̂
ρ
3 := ρ
b +

∫
ρ
x (I{|x|>1} − I{|ρ
x|>1}) ν(dx).

The process ψ̂
ρ
1 controls the quadratic variation of the continuous martingale part

of ρ · X; the process ψ̂
ρ
2 controls the quadratic variation of the “small-jump” purely
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discontinuous martingale part of ρ ·X and the intensity of the “large jumps”; whereas
ψ̂

ρ
3 controls the drift term of ρ · X when the large jumps are subtracted (it is actually

the drift rate of the bounded-jump part). We use Theorem 6.2 to prove Lemma 6.3
below, which provides a necessary and sufficient condition for X-integrability of the
candidate for numéraire portfolio.

Lemma 6.3 Suppose that ρ is a predictable process with ν[ρ
x ≤ −1] = 0 and
rel(0 | ρ) ≤ 0. Then ρ is X-integrable if and only if the condition (ψρ · G)t (ω) < ∞,
for all (ω, t) ∈ [[0, T ]] , holds for the increasing, predictable process

ψρ := ν
[
ρ
x > 1

] +
∣∣∣∣ρ
b +

∫
ρ
x (I{|x|>1} − I{|ρ
x|>1}) ν(dx)

∣∣∣∣.

Proof We have to show that G-integrability of the positive processes ψ
ρ
1 and |ψρ

2 |
(that add up to ψρ ) of (3.5) is necessary and sufficient for G-integrability of the
three processes ψ̂

ρ
i , i = 1,2,3, of Theorem 6.2. According to this last theorem,

only the sufficiency has to be proved, since the necessity holds trivially (recall
ν[ρ
x ≤ −1] = 0). Furthermore, from the same theorem, the sufficiency will be es-
tablished if we can prove that the predictable processes ψ̂

ρ
1 and ψ̂

ρ
2 are G-integrable

(note that ψ̂
ρ
3 is already covered by ψ

ρ
2 ).

Dropping the “ρ” superscripts, we embark on proving the G-integrability of ψ̂1

and ψ̂2, assuming the G-integrability of ψ1 and ψ2 in (3.5). The process ψ̂2 will
certainly be G-integrable, if one can show that the positive process

ψ̃2 :=
∫

(ρ
x)2

1 + ρ
x
I{|ρ
x|≤1}ν(dx) +

∫
ρ
x

1 + ρ
x
I{ρ
x>1}ν(dx)

is G-integrable. Since both −rel(0 | ρ) and ψ̂1 are positive processes, we get that
ψ̂1 and ψ̂2 will certainly be G-integrable, if we can show that ψ̂1 + ψ̃2 − rel(0 | ρ)

is G-integrable. But this last sum is equal to

ρ
b +
∫

ρ
x (I{|x|>1} − I{|ρ
x|>1}) ν(dx) + 2
∫

ρ
x

1 + ρ
x
I{ρ
x>1}ν(dx);

the sum of the first two terms equals ψ2, which is G-integrable, and the last (third)
term is G-integrable because ψ1 = ν[ρ
x > 1] is. �

In the context of Lemma 6.3, if we wish ρ to be X-integrable up to T and not
simply X-integrable, we have to impose ψ

ρ
T < ∞. This follows from the equivalent

characterization of X-integrability up to T in Theorem 6.2, proved in [7].
Theorem 6.2 should be contrasted with Lemma 6.3, where one does not have

to worry about the large negative jumps of ρ · X, about the quadratic variation of
its continuous martingale part, or about the quadratic variation of its small-jump
purely discontinuous parts. This follows exactly because in Lemma 6.3 we assume
ν[ρ
x ≤ −1] = 0 and rel(0 | ρ) ≤ 0: there are not many negative jumps (none above
unit magnitude), and the drift dominates the quadratic variation.
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6.3 Proof of Theorem 3.15

The fact that {I ∩ Č �= ∅} is predictable has been shown in Remark 5.2. The claim (2)
follows directly from Lemmas 3.5 and 6.3.

For the claims (1.i–1.iii), suppose that {I ∩ Č �= ∅} has zero P ⊗ G-measure. Set
Λ := {∫ log(1 + |x|)I{|x|>1}ν(dx) < ∞}—on the predictable set Λ, the random mea-
sure ν integrates the log. For all (ω, t) ∈ {I ∩ Č = ∅} ∩ Λ, according to Lemma 6.1,
there exists a (uniquely defined) ρ(ω, t) ∈ R

d with ρ(ω, t)
�X(ω, t) > −1 that
satisfies rel(π | ρ) ≤ 0, and g(ρ) = maxπ∈C∩N⊥ g(π). We also set ρ = 0 on the
(P ⊗ G-null) set {I ∩ Č = ∅}.

If {I ∩ Č = ∅} ∩ Λ has full P ⊗ G-measure, we just have to invoke Theorem 9.5
to conclude that ρ is predictable and we are done.

If {I ∩ Č = ∅} ∩ Λ does not have full P ⊗ G-measure, we still have to worry about
the predictable set {I ∩ Č = ∅} ∩ ([[0, T ]] \ Λ). On the last set, we consider an ap-
proximating sequence (νn)n∈N, keeping every νn predictable (this is easy to do, since
we can choose all densities fn to be deterministic—remember our concrete example
fn(x) = I{|x|≤1} + |x|−1/n

I{|x|>1}); we get a sequence of processes (ρn)n∈N defined
on the whole [[0, T ]] that take values in C ∩ N⊥ and solve the corresponding approx-
imating problems on {I ∩ Č = ∅} ∩ ([[0, T ]] \ Λ). According to Lemma 6.1, (ρn)n∈N

will converge pointwise to a process ρ; this will be predictable (as a pointwise limit
of predictable processes) and satisfy rel(π | ρ) ≤ 0, ∀π ∈ ΠC.

Now that we have our candidate ρ for numéraire portfolio, we only need to
check its X-integrability; according to Lemma 6.3 this is covered by the criterion
(φρ · G)t < +∞ for all t ∈ [[0, T ]]. In light of Lemma 3.5, we are done. �

7 On rates of convergence to zero for positive supermartingales

Every positive supermartingale converges, as time tends to infinity. The following
decides whether this limit is zero or not in terms of predictable characteristics and
estimates the rate of convergence to zero when this is the case.

Proposition 7.1 Let Z be a local supermartingale with �Z > −1 and Doob–Meyer
decomposition Z = M − A, where A is an increasing, predictable process. With
Ĉ := [Zc,Zc] the quadratic covariation of the continuous local martingale part of
Z and η̂ the predictable compensator of the jump measure μ̂, define the increasing
predictable process H := A+ Ĉ/2 +q(1 +x)∗ η̂ , where q : R+ �→ R+ is the convex
function q(y) := [− loga + (1−a−1)y]I[0,a)(y)+[y −1− logy]I[a,+∞)(y) for some
a ∈ (0,1).

Consider also the positive supermartingale Y = E(Z). Then on the event
{H∞ < +∞} we have limt→∞ Yt ∈ (0,+∞) , while on {H∞ = +∞} we have
lim supt→∞(H−1

t logYt ) ≤ −1.

Proposition 7.1 is an abstract version of Proposition 3.21; to obtain that latter
proposition from the former, notice that Wπ/Wρ is a positive supermartingale, and
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identify the elements A, Ĉ and q(1 + x) ∗ η̂ of Proposition 7.1 with rel(π | ρ) · G,

(π − ρ)
c(π − ρ) · G, and (
∫

qa(
1+π
x
1+ρ
x

)ν(dx)) · G.
If we further assume �Z ≥ −1 + δ for some δ > 0 then, by considering q(x) =

x − log(1 + x) in the definition of H , we obtain limt→∞(H−1
t logYt ) = −1 on the

set {H∞ = +∞}, i.e., we get the exact rate of decay of logY to −∞.

Remark 7.2 In the course of the proof, we shall make heavy use of the following: For
a locally square integrable martingale N with angle-bracket (predictable quadratic
variation) process 〈N,N〉, on the event {〈N,N〉∞ < +∞} the limit N∞ exists and is
finite, whereas on the event {〈N,N〉∞ = +∞} we have limt→∞ Nt/〈N,N〉t = 0.

Note also that if N = v(x) ∗ (μ̂ − η̂) then 〈N,N〉 ≤ v(x)2 ∗ η̂ (equality holds if
and only if N is quasi-left-continuous). Combining this with the previous remarks we
get that on the event {(v(x)2 ∗ η̂)∞ < +∞} the limit N∞ exists and is finite, whereas
on {(v(x)2 ∗ η̂)∞ = +∞} we have limt→∞ Nt/(v(x)2 ∗ η̂)t = 0.

Proof of Proposition 7.1 For the supermartingale Y = E(Z), the stochastic exponen-
tial formula (1.1) gives logY = Z − [Zc,Zc]/2 − ∑

s≤·[�Zs − log(1 + �Zs)] or,
equivalently,

logY = −A + (Mc − Ĉ/2) + (
x ∗ (μ̂ − η̂) − [

x − log(1 + x)
] ∗ μ̂

)
. (7.1)

We start with the continuous local martingale part, and use Remark 7.2 twice:
first, on {Ĉ∞ < +∞}, Mc∞ exists and is real-valued; second, on {Ĉ∞ = +∞}, we get
limt→∞(Mc

t − Ĉt /2)/(Ĉt /2) = −1.
To deal with the purely discontinuous local martingale part, we first define the

two indicator functions � := I[−1,−1+a) and r := I[−1+a,+∞), where � and r stand as
mnemonics for �eft and right. Define the two semimartingales

E := [
�(x) log(1 + x)

] ∗ μ̂ − [
�(x)x

] ∗ η̂,

F := [
r(x) log(1 + x)

] ∗ (μ̂ − η̂) + [
r(x)q(1 + x)

] ∗ η̂,

and observe that x ∗ (μ̂ − η̂) − [x − log(1 + x)] ∗ μ̂ = E + F .
We claim that, on {(q(1 + x) ∗ η̂)∞ < +∞}, both E∞ and F∞ exist and are

real-valued. For E, this happens because ([�(x)q(1 + x)] ∗ η̂)∞ < +∞ implies
that there will only be a finite number of times when �Z ∈ (−1,−1 + a] so that
both terms in the definition of E have a limit at infinity. Turning to F , the sec-
ond term in its definition is, obviously, finite-valued at infinity, whereas for the lo-
cal martingale term [r(x) log(1 + x)] ∗ (μ̂ − η̂) we need only use the set inclusion
{([r(x)q(1 + x)] ∗ η̂)∞ < +∞} ⊆ {([r(x) log2(1 + x)] ∗ η̂)∞ < +∞} to get that it
has finite predictable quadratic variation and use Remark 7.2.

Now we turn attention to the event {(q(1 + x) ∗ η̂)∞ = +∞}; there at least one of
the quantities ([�(x)q(1 + x)] ∗ η̂)∞ and ([r(x)q(1 + x)] ∗ η̂)∞ must be infinite.

On the event {([r(x)q(1 + x)] ∗ η̂)∞ = ∞}, use of the definition of F and then
Remark 7.2 gives limt→∞ Ft/([r(x)q(1 + x)] ∗ η̂)t = −1.

Now let us work on the event {([�(x)q(1 + x)] ∗ η̂)∞ = ∞}. We know that the
inequality logy ≤ y − 1 − q(y) holds for y > 0; using this last inequality in the first
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term in the definition of E we get E ≤ [�(x)(x − q(1 + x))] ∗ μ̂ − [�(x)x] ∗ η̂, or,
further, that E ≤ [�(x)(x − q(1 + x))] ∗ (μ̂ − η̂) − [�(x)q(1 + x)] ∗ η̂. From this last
inequality and Remark 7.2 we get lim supt→∞ Et/([�(x)q(1 + x)] ∗ η̂)t ≤ −1.

Let us summarize the last paragraphs on the purely discontinuous part. On the
event {(q(1 + x) ∗ η̂)∞ < +∞}, the limit (x ∗ (μ̂ − η̂) − [x − log(1 + x)] ∗ μ̂)∞
exists and is finite; on the other hand, on the event {(q(1 +x)∗ η̂)∞ = +∞}, we have
lim supt→∞(x ∗ (μ̂ − η̂) − [x − log(1 + x)] ∗ μ̂)t /(q(1 + x) ∗ η̂)t ≤ −1.

From the previous discussion on the continuous and the purely discontinuous local
martingale parts of logY and the definition of H , the result follows. �

8 Proof of Proposition 4.16

8.1 The proof

Start by defining Ω0 := {(ψρ · G)T < ∞} and ΩA := Ω \ Ω0.
First, we show the result for Ω0. Assume P[Ω0] > 0, and call P0 the probability

measure one gets by conditioning P on the set Ω0. The process ρ, of course, remains
predictable when viewed under the new measure; and, because we are restricting
ourselves to Ω0, ρ is X-integrable up to T under P0.

By a simple use of the dominated convergence theorems for Lebesgue and for
stochastic integrals, all three sequences of processes ρn · X, [ρn · Xc, ρn · Xc] and∑

s≤·[ρ

n �Xs − log(1 + ρ


n �Xs)] converge uniformly (in t ∈ [0, T ]) in P0-measure
to three processes, that do not depend on the sequence (ρn)n∈N. Then the stochastic
exponential formula (1.1) gives that W

ρn

T converges in P0-measure to a random vari-
able, which does not depend on the sequence (ρn)n∈N. Since the limit of the sequence
(IΩ0W

ρn

T )n∈N is the same under both the P-measure and the P0-measure, we conclude
that, on Ω0, the sequence (W

ρn

T )n∈N converges in P-measure to a real-valued random
variable, independently of the choice of the sequence (ρn)n∈N.

Now we have to tackle the set ΩA, which is trickier. We shall use a “helping
sequence of portfolios”. Suppose P[ΩA] > 0; otherwise, there is nothing to prove.
Under this assumption, there exists a sequence of [0,1]-valued predictable processes
(hn)n∈N such that each πn := hnρ is X-integrable up to T and the sequence of ter-
minal values ((πn · X)T )n∈N is unbounded in probability (readers unfamiliar with
this fact should consult [5], Corollary 3.6.10, p. 128). It is reasonable to believe (but
wrong in general, and a little tedious to show in our case) that unboundedness in
probability of the terminal values ((πn · X)T )n∈N implies that the sequence of the
terminal values for the stochastic exponentials (W

πn

T )n∈N is also unbounded in prob-
ability. We shall show this in Lemma 8.1 of the next subsection; for the time being,
we accept this as a fact. Then P[lim supn→∞ W

πn

T = +∞] > 0, where the lim sup is
taken in probability and not almost surely (recall Definition 4.15).

Let us return to our original sequence of portfolios (ρn)n∈N with ρn = θnρ

and show that {lim supn→∞ W
πn

T = +∞} ⊆ {lim supn→∞ W
ρn

T = +∞}. Both of
these upper limits and, in fact, all the lim sup that will appear until the end of
the proof are supposed to be in P-measure. Since each θn is [0,1]-valued and
limn→∞ θn = I, one can choose an increasing sequence (k(n))n∈N of natural num-

bers such that the sequence (W
θk(n)πn

T )n∈N is unbounded in P-measure on the set
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{lim supn→∞ W
πn

T = +∞}. Now each process Wθk(n)πn/Wρk(n) is a positive super-
martingale, since rel(θk(n)πn | ρk(n)) = rel(θk(n)hnρ | hnρ) ≤ 0, the last inequality
due to the fact that [0,1] " u �→ g(uρ) is increasing, and so the sequence of random

variables (W
θk(n)πn

T /W
ρk(n)

T )n∈N is bounded in probability. From the last two facts
follows that the sequence of random variables (W

ρk(n)

T )n∈N is also unbounded in P-
measure on {lim supn→∞ W

πn

T = +∞}.
Up to now we have shown P[lim supn→∞ W

ρn

T = +∞] > 0 and we also know
{lim supn→∞ W

ρn

T = +∞} ⊆ ΩA; it remains to show that the last set inclusion is ac-
tually an equality (mod P). Set ΩB := ΩA \ {lim supn→∞ W

ρn

T = +∞} and assume
that P[ΩB ] > 0. Working under the conditional measure on ΩB (denoted by PB )
and following the exact same steps we carried out two paragraphs ago, we find pre-
dictable processes (hn)n∈N such that each πn := hnρ is X-integrable up to T under
PB and such that the sequence of terminal values ((πn · X)∞)n∈N is unbounded in
PB -probability; then PB [lim supn→∞ W

ρn

T = +∞] > 0, which contradicts the defin-
ition of ΩB , and we are done. �

8.2 Unboundedness for stochastic exponentials

We still owe one thing in the previous proof: at some point we had a sequence of
random variables ((πn · X)T )n∈N that was unbounded in probability and needed to
show that the sequence (E(πn · X)T )n∈N is unbounded in probability as well. One
has to be careful with statements like that because, as we shall see in Remark 8.2, the
stochastic—unlike the usual—exponential is not a monotone operation.

We have to prove the following Lemma 8.1 and finish the proof of Proposi-
tion 4.16. To begin, observe that with Rn := πn · X the collection (Rn)n∈N is such
that �Rn > −1, and E(Rn)

−1 is a positive supermartingale for all n ∈ N.
A class R of semimartingales will be called “unbounded in probability” if the

collection {supt∈[0,T ] |Rt | | R ∈ R} is unbounded in probability. Similar definitions
apply for (un)boundedness from above and below, taking one-sided suprema.

Lemma 8.1 Let R be a collection of semimartingales such that R0 = 0, �R > −1
and suppose E(R)−1 is a (positive) supermartingale for all R ∈ R (in particular,
E(R)T exists and takes values in (0,∞]). Then the collection of processes R is
unbounded in probability if and only if the collection of positive random variables
{E(R)T | R ∈ R} is unbounded in probability.

Proof We shall only consider boundedness notions “in probability” throughout.
Since R ≥ logE(R) for all R ∈ R, one side of the equivalence is trivial, and we
only have to prove that if R is unbounded then {E(R)T | R ∈ R} is unbounded. We
split the proof of this into four steps.

(i) Since {E(R)−1 | R ∈ R} is a collection of positive supermartingales, it is
bounded from above, thus {logE(R) | R ∈ R} is bounded from below. Since R ≥
logE(R) for all R ∈ R and R is unbounded, it follows that it must be unbounded
from above.

(ii) Let us now show that the collection of random variables {E(R)T | R ∈ R}
is unbounded if and only if the collection of semimartingales {E(R) | R ∈ R} is
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unbounded (from above, of course, since they are positive). One direction is trivial: if
the semimartingale class is unbounded, the random variable class is unbounded, too;
we only need to argue the reverse implication. Unboundedness of {E(R) | R ∈ R}
means that we can pick an ε > 0 so that, for any n ∈ N, there exists a semimartingale
Rn ∈ R such that for the stopping times τn := inf{t ∈ [0, T ] | E(Rn)t ≥ n} (as usual,
we set τn = ∞ where the last set is empty) we have P[τn < ∞] ≥ ε. Each E(Rn)−1

is a supermartingale; therefore,

P
[
E
(
Rn

)−1
T

≤ n−1/2] ≥ P
[
E
(
Rn

)−1
T

≤ n−1/2 | τn < ∞]
P[τn < ∞] ≥ ε

(
1 − n−1/2),

so (E(Rn)T )n∈N is unbounded, and the claim of this paragraph is proved.
We want to show now that if R is unbounded then {E(R) | R ∈ R} is unbounded,

too. Define the class Z := {L(E(R)−1) | R ∈ R}; we have Z0 = 0, �Z > −1, and
that Z is a local supermartingale for all Z ∈ Z .

(iii) Let us prove that if the collection Z is bounded from below then it is also
bounded from above. To this end, pick any ε > 0. We can find an M ∈ R+ such
that the stopping times τZ := inf{t ∈ [0, T ] | Zt ≤ −M + 1} (we set τZ = ∞ where
the last set is empty) satisfy P[τZ < ∞] ≤ ε/2 for all Z ∈ Z . Since �Z > −1, we
have ZτZ

≥ −M , and so each stopped process ZτZ is a supermartingale (it is a local
supermartingale bounded uniformly from below). Then, with yε := 2M/ε, we have

P

[
sup

t∈[0,T ]
Zt > yε

]
≤ (ε/2) + P

[
sup

t∈[0,T ]
Z

τZ
t > yε

]
≤ (ε/2) + (1 + yε/M)−1 ≤ ε,

and thus Z is bounded from above, too
(iv) Now we have all the ingredients for the proof. Suppose that R is unbounded;

we have seen that it has to be unbounded from above. Using Lemma 3.4 with Y ≡ 0,
we get that every Z ∈ Z is of the form

Z = −R + [
Rc,Rc] +

∑
s≤·

|�Rs |2
1 + �Rs

. (8.1)

When Z is unbounded from below things are pretty simple, because logE(Z) ≤ Z

for all Z ∈ Z so that {logE(Z) | Z ∈ Z} is unbounded from below and, thus,
{E(R) | R ∈ R} = {exp(− logE(Z)) | Z ∈ Z} is unbounded from above.

It remains to see what happens if Z is bounded from below. From step (iii)
we know that Z must be bounded from above as well. Then, because of (3.1)
and the unboundedness from above of R, this would mean that the collection
{[Rc,Rc] + ∑

s≤·[|�Rs |2/(1 + �Rs)] | R ∈ R} of increasing processes is also un-
bounded. Now for Z ∈ Z we have

logE(Z) = − logE(R) = −R + 1

2

[
Rc,Rc] +

∑
s≤·

[
�Rs − log(1 + �Rs)

]

from (8.1) and the stochastic exponential formula, so that

Z − logE(Z) = 1

2

[
Rc,Rc] +

∑
s≤·

[
log(1 + �Rs) − �Rs

1 + �Rs

]
.



The numéraire portfolio in semimartingale financial models 487

The collection of increasing processes on the right-hand side of this last equation is
unbounded, because {[Rc,Rc] + ∑

s≤·[(�Rs)
2/(1 + �Rs)] | R ∈ R} is unbounded,

too; as we observed. But since Z is bounded, this means that {logE(Z) | Z ∈ Z} is
unbounded from below, and we conclude again as before. �

Remark 8.2 Without the assumption that {E(R)−1 | R ∈ R} consists of supermartin-
gales, this result is no longer true. In fact, take T ≡ +∞ and R = {R} where
Rt = at + βt , with a ∈ (0,1/2) and β is a standard one-dimensional Brownian
motion. Then R is bounded from below and unbounded from above; nevertheless,
logE(R)t = (a − 1/2)t + βt is bounded from above and unbounded from below.
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Appendix 1 Measurable random subsets

Throughout this section we shall be working on a measurable space (Ω̃,P); although
the results are general, think of Ω̃ as Ω × R+ and of P as the predictable σ -algebra.
The metric of the Euclidean space R

d is denoted by “dist” and its generic point by z.
Proofs of the results below will not be given, but can be found (in greater generality)
in Chap. 17 of [2]; for shorter proofs of the specific results, see [28]. The subject of
measurable random subsets and measurable selection is slightly gory in its technical-
ities, but the statements should be intuitively clear.

A random subset of R
d is just a random variable taking values in 2R

d
, the powerset

(class of all subsets) of R
d . Thus, a random subset of R

d is a function A : Ω̃ �→ 2R
d
.

A random subset A of R
d will be called closed (resp., convex) if the set A(ω̃) is

closed (resp., convex) for every ω̃ ∈ Ω̃ .
Measurability requirements on random subsets are given by placing some mea-

surable structure on the space 2R
d
, which we endow with the smallest σ -algebra that

makes the mappings 2R
d " A �→ dist(z,A) ∈ R+ ∪ {+∞} measurable for all z ∈ R

d

(by definition, dist(z,∅) = +∞). The following equivalent formulations are some-
times useful.

Proposition 9.1 The constructed σ -algebra on 2R
d

is also the smallest σ -algebra
that makes the class {2R

d " A �→ I{A∩K �=∅}}, for every compact (resp. closed, resp.
open) K ⊆ R

d of functions measurable.

From Proposition 9.1, a random subset A of R
d is measurable if for any compact

K ⊆ R
d , the set {A ∩ K �= ∅} := {ω̃ ∈ Ω̃ | A(ω̃) ∩ K �= ∅} is P-measurable.

Remark 9.2 Suppose that the random subset A is a singleton A(ω̃) = {a(ω̃)} for some
a : Ω̃ �→ R

d . Then A is measurable if and only if {a ∈ K} ∈ P for all closed K ⊆ R
d ,

i.e., if and only if a is P-measurable.
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We now deal with unions and intersections of random subsets of R
d .

Lemma 9.3 Suppose that (An)n∈N is a sequence of measurable random subsets
of R

d . Then the union
⋃

n∈N
An is also measurable. If, furthermore, each random

subset An is closed then the intersection
⋂

n∈N
An is measurable.

The following lemma gives a way to construct measurable, closed random subsets
of R

d . To state it, we shall need (a slight generalization of) the notion of Carathéodory
function. For a measurable closed random subset A of R

d , a mapping f of Ω̃ × R
d

into another topological space will be called Carathéodory on A, if it is measurable
(with respect to the product σ -algebra on Ω̃ × R

d ), and if z �→ f (ω̃, z) is continuous
on A(ω̃), for each ω̃ ∈ Ω̃ . Of course, if A ≡ R

d , we recover the usual textbook notion
of a Carathéodory function.

Lemma 9.4 Let E be any topological space, F ⊆ E a closed subset, and A a closed
and convex random subset of R

d . If f : Ω̃ × R
d → E is a Carathéodory function

on A then C := {z ∈ A | f (·, z) ∈ F } is closed and measurable.

The last result focuses on the measurability of the “argument” process in random
optimization problems.

Theorem 9.5 Suppose that A is a closed and convex, measurable, non-empty random
subset of R

d , and f : Ω̃ × R
d �→ R ∪ {−∞} is a Carathéodory function on A. For

the optimization problem f∗(ω̃) = supz∈A f (ω̃, z) , we have:

(1) The value function f∗ is P-measurable.
(2) Suppose that f∗(ω̃) is finite for all ω̃, and that there exists a unique z∗(ω̃) ∈ A(ω̃)

satisfying f (ω̃, z∗(ω̃)) = f∗(ω̃). Then ω̃ �→ z∗(ω̃) is P-measurable.

In particular, if A is a closed and convex, measurable, non-empty random subset
of R

d , we can find a P-measurable h : Ω̃ → R
d with h(ω̃) ∈ A(ω̃) for all ω̃ ∈ Ω̃ .

For the “particular” case of the last theorem one can use, for example, the function
f (x) = −|x| and the result of the first part of the theorem.

Appendix 2 Semimartingales and stochastic integration up to +∞

We recall here a few important concepts from [7] and prove a few useful results. One
can also check [9] for the ideas presented below.

Definition 10.1 Let X = (Xt )t∈R+ be a semimartingale such that X∞ := limt→∞ Xt

exists. Then X will be called a semimartingale up to infinity if the process X̃ de-
fined on the time interval [0,1] by X̃(t) = X(t/(1 − t)) (of course, X̃1 = X∞) is a
semimartingale relative to the filtration F̃ = (F̃t )t∈[0,1] defined by F̃t := Ft/(1−t) for
0 ≤ t < 1 and F̃1 := ∨

t∈R+ Ft .
Similarly, we define local martingales up to infinity, processes of finite variation

up to infinity, etc., if the corresponding process X̃ has the property.
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Fix a d-dimensional semimartingale X. An X-integrable predictable process π

will be called X-integrable up to infinity if π · X is a semimartingale up to infinity.

To appreciate the difference between a semimartingale with limit at infinity and a
semimartingale up to infinity, consider the simple example where X is the determin-
istic, continuous process Xt := t−1 sin t ; then X is a semimartingale with X∞ = 0,
but Var(X)∞ = +∞, and thus X cannot be a semimartingale up to infinity (a deter-
ministic semimartingale must be of finite variation).

Every semimartingale up to infinity X can be written as a sum X = A + M ,
where A is a process of finite variation up to infinity (which simply means that
Var(A)∞ < ∞) and M is a local martingale up to infinity (which means that there
exists an increasing sequence of stopping times (Tn)n∈N with {Tn = +∞} ↑ Ω such
that each of the stopped processes MTn is a uniformly integrable martingale).

Lemma 10.2 A positive supermartingale Z is a special semimartingale up to infinity.
If, furthermore, Z∞ > 0 then L(Z) is also a special semimartingale up to infinity, and
both Z−1 and L(Z−1) are semimartingales up to infinity.

Proof We start with the Doob–Meyer decomposition Z = M − A, where M is a
local martingale with M0 = Z0 and A is an increasing, predictable process. The
positive local martingale M is a supermartingale, and we can infer that both lim-
its Z∞ and M∞ exist and are integrable. This means that A∞ exists and, actually,
E[A∞] = E[M∞] − E[Z∞] < ∞, so A is a predictable process of integrable vari-
ation up to infinity. It remains to show that M is a local martingale up to infinity.
Set Tn := inf{t ≥ 0 | Mt ≥ n}; this obviously satisfies {Tn = +∞} ↑ Ω (the supre-
mum of a positive supermartingale is finite). Since sup0≤t≤Tn

Mt ≤ n + MTnI{Tn<∞}
and, by the optional sampling theorem E[MTnI{Tn<∞}] ≤ E[M0] < ∞, we get
E[sup0≤t≤Tn

Mt ] < ∞. Thus, the local martingale MTn is actually a uniformly in-
tegrable martingale, and thus Z is a special semimartingale up to infinity.

Now assume that Z∞ > 0. Since Z is a supermartingale, this will mean
that both Z̃ and Z̃− are bounded away from zero. (A “tilde” over a process
means that we are considering the process of Definition 10.1 under the new fil-
tration F̃.) Since Z̃−1− is locally bounded and Z̃ is a special semimartingale,
L(Z̃) = Z̃−1− · Z̃ will be a special semimartingale as well, meaning that L(Z) is a
special semimartingale up to infinity. Furthermore, Itô’s formula applied to the in-
verse function (0,∞) " x �→ x−1 implies that Z̃−1 is a semimartingale up to infinity
and, since Z̃− is locally bounded, L(Z̃−1) = Z̃− · Z̃−1 is a semimartingale, which
finishes the proof. �

Remark 10.3 In this paper we consider “semimartingales up to time T ” and “stochas-
tic integration up to time T ” where T is a stopping time rather than “semimartingales
up to infinity” and “stochastic integration up to infinity”. One can use all the results
of this section applying them to the processes stopped at time T —divergence from
the usual notion of integrability appears only when P[T = ∞] > 0.
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Appendix 3 σ -Localization

A good account of the concept of σ -localization is given in [23]. Here we recall
briefly what is needed for our purposes. For a semimartingale Z and a predictable set
Σ , define ZΣ := IΣ · Z.

Definition 11.1 Let Z be a class of semimartingales. Then the corresponding
σ -localized class Zσ is defined as the set of all semimartingales Z for which there
exists an increasing sequence (Σn)n∈N of predictable sets such that Σn ↑ Ω × R+
(up to evanescence) and ZΣn ∈ Z for all n ∈ N.

When the corresponding class Z has a name (like “supermartingales”) we baptize
the class Zσ with the same name preceded by “σ -” (like “σ -supermartingales”).

The concept of σ -localization is a natural extension of the well-known concept
of localization along a sequence (τn)n∈N of stopping times, as one can easily see by
considering the predictable sets Σn ≡ [[0, τn]] := {(ω, t) ∈ Ω × R+ | 0 ≤ t ≤ τn(ω)}.

Let us define the set U of semimartingales Z such that the collection of random
variables {Zτ | τ is a stopping time} is uniformly integrable—also known in the lit-
erature as semimartingales of class (D). The elements of U admit the Doob–Meyer
decomposition Z = A + M into a predictable finite variation part A with A0 = 0 and
E[Var(A)∞] < ∞ and a uniformly integrable martingale M . It is then obvious that
the localized class Uloc corresponds to all special semimartingales; they are exactly
the ones which admit a Doob–Meyer decomposition as before, but where now A is
only a predictable, finite variation process with A0 = 0 and M a local martingale. Let
us remark that the local supermartingales (resp., local submartingales) correspond to
these elements of Uloc with A decreasing (resp., increasing). This last result can be
found, for example, in [20], Proposition 2.18, and the discussion following it.

One can have very intuitive interpretations of some σ -localized classes in terms of
the predictable characteristics of Z.

Proposition 11.2 Consider a scalar semimartingale Z and let (b, c, ν) be the triplet
of predictable characteristics of Z relative to the canonical truncation function and
the operational clock G. Then

(1) Z belongs to Uloc if and only if the predictable process
∫ |x|I{|x|>1}ν(dx) is

G-integrable.
(2) Z belongs to Uσ if and only if

∫ |x|I{|x|>1}ν(dx) < ∞.
(3) Z is a σ -supermartingale if and only if

∫ |x|I{|x|>1}ν(dx) < +∞ and
b + ∫

xI{|x|>1}ν(dx) ≤ 0.

Proof The first statement follows from the fact that a 1-dimensional semimartingale
Z is a special semimartingale (i.e., a member of Uloc) if and only if [|x|I{|x|>1}] ∗ η̂ is
a finite, increasing predictable process (one can consult [21], Proposition 2.29, for this
fact). The second statement follows easily from the first and σ -localization. Finally,
the third follows from the fact that for a process in Uloc the predictable finite variation
part is given by the process (b + ∫ [xI{|x|>1}]ν(dx)) · G , using the last remark before
the proposition, the first part of the proposition, and σ -localization. �
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Results like the last proposition are very intuitive, because b + ∫
xI{|x|>1}ν(dx)

represents the infinitesimal drift rate of the semimartingale Z; we expect this
rate to be negative (resp., positive) in the case of σ -supermartingales (resp.,
σ -submartingales). The importance of σ -localization is that it allows us to talk di-
rectly about drift rates of processes, rather than about drifts. Sometimes drift rates
exist, but cannot be integrated to give a drift process; this is when the usual localiza-
tion technique fails, and the concept of σ -localization becomes useful.

The following result gives sufficient conditions for a σ -supermartingale to be a
local supermartingale (or even plain supermartingale).

Proposition 11.3 Suppose that Z is a scalar semimartingale with triplet of pre-
dictable characteristics (b, c, ν).

(1) Suppose that Z is a σ -supermartingale. Then the following are equivalent:
(a) Z is a local supermartingale.
(b) The positive, predictable process

∫
(−x)I{x<−1}ν(dx) is G-integrable.

(2) If Z is a σ -supermartingale (resp., σ -martingale) and bounded from below by a
constant then it is a local supermartingale (resp., local martingale). If, further-
more, E[Z+

0 ] < ∞, it is a supermartingale.
(3) If Z is bounded from below by a constant then it is a supermartingale if and only

if E[Z+
0 ] < ∞ and b + ∫

xI{|x|>1}ν(dx) ≤ 0.

Proof For the proof of (1), the implication (a) ⇒ (b) follows from part (1) of
Proposition 11.2. For (b) ⇒ (a), assume that

∫
(−x)I{x<−1}ν(dx) is G-integrable.

Since Z is a σ -supermartingale, it follows from part (3) of Proposition 11.2 that∫
xI{x>1}ν(dx) ≤ −b + ∫

(−x)I{x<−1}ν(dx). Now this last inequality implies that∫ |x|I{|x|>1}ν(dx) ≤ −b + 2
∫
(−x)I{x<−1}ν(dx); the last dominating process is

G-integrable, thus Z ∈ Uloc (again, part (1) of Proposition 11.2). The special semi-
martingale Z has predictable finite variation part equal to (b + ∫

xI{x>1}ν(dx)) · G,
which is decreasing, so that Z is a local supermartingale.

For part (2), we can of course assume that Z is positive. We discuss the case
of a σ -supermartingale; the σ -martingale case follows in the same way. Accord-
ing to part (1) of this proposition, we only need to show that

∫
(−x)I{x<−1}ν(dx)

is G-integrable. But since the negative jumps of Z are bounded in magnitude by Z−,
we have that

∫
(−x)I{x<−1}ν(dx) ≤ (Z−)ν[x < −1], which is G-integrable, because

ν[x < −1] is G-integrable and Z− is locally bounded. Now, if we further assume that
E[Z0] < ∞, Fatou’s lemma for conditional expectations gives us that the positive lo-
cal supermartingale Z is a supermartingale.

Let us move on to part (3) and assume that Z is positive. First assume that
Z is a supermartingale. Then, of course, we have E[Z0] < ∞ and that Z is an
element of Uσ (and even of Uloc) and part (3) of Proposition 11.2 ensures that
b + ∫

xI{|x|>1}ν(dx) ≤ 0. Now assume that Z is a positive semimartingale with
E[Z0] < ∞ and that b + ∫

xI{|x|>1}ν(dx) ≤ 0. Then, of course, we have that∫
xI{x>1}ν(dx) < ∞. Also, since Z is positive, we always have that ν[x < −Z−] = 0

so that
∫
(−x)I{x<−1}ν(dx) < ∞, too. Part (2) of Proposition 11.2 will give us that

Z ∈ Uσ , and part (3) of the same proposition that Z is a σ -supermartingale. Finally,
part (2) of this proposition gives us that Z is a supermartingale. �
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The special case of result (3) of Proposition 11.3 when Z is a σ -martingale is
sometimes called “the Ansel–Stricker theorem,” since it first appeared (in a slightly
different, but equivalent form) in [3]. In [23] one can find the proof of the case when
Z is a σ -supermartingale bounded from below with E[Z+

0 ] < ∞.
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