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We study a continuous-time financial market with continuous price processes under
model uncertainty, modeled via a family P of possible physical measures. A robust
notion NA(P) of no-arbitrage of the first kind is introduced; it postulates that a
nonnegative, nonvanishing claim cannot be superhedged for free by using simple trad-
ing strategies. Our first main result is a version of the fundamental theorem of asset
pricing: NA(P) holds if and only if every P € P admits a martingale measure that is
equivalent up to a certain lifetime. The second main result provides the existence of
optimal superhedging strategies for general contingent claims and a representation of
the superhedging price in terms of martingale measures.
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1. INTRODUCTION

We consider a financial market where stocks are traded in continuous time. The (dis-
counted) stock price process .S is assumed to be continuous, but its distribution in the
sense of a stochastic model is not necessarily known. Rather, the market is considered
under a family P of probability measures: each P € P is understood as a possible model
for the real-world dynamics of S. Two fundamental questions are studied in this context:
the absence of arbitrage and its relation to linear pricing rules (fundamental theorem of
asset pricing), and the range of arbitrage-free prices (superhedging theorem).

We introduce a robust notion of market viability, called no-arbitrage of the first kind
and denoted by NA|(P). Given a contingent claim f > 0 at maturity T, let vS™P( f) be
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964 S.BIAGINIET AL.

the minimal initial capital necessary to superhedge f simultaneously under all models
PeP,

ySImP( ) := inf {x: IHwithx+ H® S; > f P-as.forall P € P}.

In the above, we allow only simple trading strategies H, so that there are no limitations
related to defining the stochastic integral H ® S—no semimartingale assumption is
made. Our condition NA|(P) then postulates that

yIMP(f) =0 implies f =0 P-as. forall P e P.

To state the same in reverse, the price vS™P( f) should be strictly positive if P{f > 0} > 0
holds for some P € P. This condition corresponds to Kardaras (2010, definition 1.1)
when P is a singleton; it will turn out to be a notion of market viability that is well suited
for model uncertainty in continuous time.

The main goal of the fundamental theorem is to deduce the existence of martingale
measures, or linear pricing rules, from the absence of arbitrage opportunities. In the
classical case (Dalang, Morton, and Willinger 1990; Delbaen and Schachermayer 1994),
this measure is equivalent to the physical measure P. In the case of model uncertainty
in a discrete-time market, the fundamental theorem of Bouchard and Nutz (2015) yields
a family Q of martingale measures such that each P € P is dominated by a martingale
measure; the families P and Q are equivalent in the sense that they have the same polar
sets. In the present setting with continuous processes, we find a result that is stronger in
the sense that each P admits an equivalent martingale measure Q. On the other hand,
equivalence needs to be defined in a weaker way: it is necessary to allow for a loss of mass
in our martingale deflators; thus, the measures Q may allocate mass outside the support
of P. As a result, the equivalence of measures holds only up to a random time ¢, and
so does the martingale property. More precisely, we suppose that our model is set on a
canonical space Q2 of paths that are continuous before possibly jumping to a cemetery
state, and ¢ is the time of this jump. This “lifetime” is infinite and thus invisible under all
P € P, but may be finite under some Q € Q. With these notions in place, our version of
the fundamental theorem then states that NA(P) holds if and only if for every P € P,
there exists a local martingale measure Q such that Q and P are equivalent prior to ¢.
See Definition 3.3 and Theorem 3.4 for the precise statements.

A related setting is considered in Dolinsky and Soner (2014a) where S'is the canonical
process in the space of continuous paths. Roughly speaking, the market model considered
there corresponds to declaring all paths to be possible for the stock price, or including
all measures in P. There is then no necessity for a definition of arbitrage; in some sense,
the absence of the latter is implicit in the fact that all paths are possible. Nevertheless, the
duality result stated in Dolinsky and Soner (2014a) implies a conclusion in the direction of
the fundamental theorem; namely, it follows that there must exist at least one martingale
measure under the conditions of that result. A similar result on Skorokhod space is
reported in Dolinsky and Soner (2015). We also refer to Davis and Hobson (2007) for a
discussion of different notions of arbitrage in the context of traded options. For versions
of the robust fundamental theorem for discrete-time frictionless markets, see Acciaio
et al. (2016), Bouchard and Nutz (2015), Burzoni, Frittelli, and Maggis (2016), and
Riedel (2015); for discrete-time markets with transaction costs, see Bayraktar and Zhang
(2016), Bayraktar, Zhang, and Zhou (2014), Bouchard and Nutz (2016), and Dolinsky
and Soner (2014b).
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The second main result of this paper is a superhedging theorem in our setting. Assume
that NA;(P) holds and let / > 0 be a contingent claim, measurable at time 7. Then, we
establish the duality

sup EQ[f1;>T] = inf{x: JHwithx+ H® Sp > f P-as.forall P e 73};
Q€0

moreover, we construct an optimal superhedging strategy H—naturally, this necessitates
continuous trading. See Theorem 5.1 for the precise statement.

The line of argument in the proof is similar to Nutz (2015) where it is assumed that
‘P consists of martingale measures in the first place. In the present case, the martingale
property holds only prior to ¢ which necessitates a number of additional considerations.
Generally speaking, the superhedging theorem is fairly well studied in the situation where
P consists of martingale measures; cf. Bouchard, Moreau, and Nutz (2014), Denis and
Martini (2006), Fernholz and Karatzas (2011), Neufeld and Nutz (2013), Nutz and Soner
(2012), Nutz and Zhang (2015), Peng (2010), Possamai, Royer, and Touzi (2013), Soner,
Touzi, and Zhang (2011), Soner, Touzi, and Zhang (2013), among others, or when all
paths are considered possible for the stock and options are also traded; see, e.g., Cox
and Obtoj (2011), Davis and Hobson (2007), Dolinsky and Soner (2014a), Dolinsky and
Soner (2015), Galichon, Henry-Labordeére, and Touzi (2014), and Hobson (1998). We
also refer to Acciaio et al. (2016), Bayraktar et al. (2014), Bouchard and Nutz (2015),
Dolinsky and Soner (2014b), and Nutz (2014) for discrete-time markets. Finally, in
the forthcoming independent work (Cheridito, Kupper, and Tangpi 2015), absence of a
duality gap will be established by functional analytic methods in a market more general
than ours, under a condition that is stronger than NA(P).

The remainder of this paper is organized as follows. The setup is detailed in Section 2,
where we also define NA|(P). In Section 3, we discuss our version of the fundamental
theorem of asset pricing. Section 4 provides some technical results on prior-to-¢ equiva-
lent martingale measures; these are used in Section 5, where we study the superhedging
theorem. Finally, the Appendix collects auxiliary results on Follmer’s exit measure and
the particular path space that are used in the body of this paper.

2. SETUP
2.1. Measurable Space and Model Uncertainty

We first construct the underlying measurable space (€2, F) used throughout the paper.
Let E be a Polish space and let dz be a complete metric consistent with the topology of
E. Adjoining an isolated “cemetery” state A, we shall work with E := E U {A}. Itis easy
to see that E is again a Polish space under the metric

dp(x, y) =1 Adp(x, Miagicyy + Laepeonnpzy, X, € E.

We then define  to be the space of all paths w : R, — E which start at a given point
X, € E, are cadlag on [0, ¢ (w)) and constant on [¢(w), 00), where

C(w):=inf{t > 0: w, = A}
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is the “lifetime” of w. The function ¢ takes values in (0, co] as x, € E and the paths are
right-continuous. It is shown in Lemma A.7 in the Appendix that Q carries a natural
Polish topology.

We denote by B = (B)icr, the canonical process, defined by B/(w)= w;, and by
F = (F))ier, its natural filtration, F; = o(By, s < f), and finally F = o(B;, s € R}).
The set of F-stopping times is denoted by 7. The minimal right-continuous filtration
containing F is denoted by F. = (F;1);er., While 7 is the set of all F__-stopping times.
With these notions in place, we observe that {¢ <t} ={B(t) = A} € F; forall t e R,
and hence that ¢ € 7.

To represent model uncertainty, we shall work with a (nonempty) family P of probabil-
ity measures on (€2, F), rather than a single measure. Each element P € P is interpreted
as a possible model for the real-world dynamics; no domination assumption is made. We
say that a property holds P-quasi-surely (or P-q.s.) if it holds P-a.s. for all P € P. We
shall assume throughout that

{ =00 P-qs.

Thus, the cemetery state is actually invisible under the real-world models; its role will be
to absorb the residual mass of certain martingale measures.

Given a o-field G € F, we denote by L&(g) the set of all [0, co]-valued, G-measurable
random variables that are 7-q.s. finite.

2.2. Trading and Arbitrage

The tradable assets are modeled by an R-valued, F-adapted, and right-continuous
process S: R, x 2 — R? such that

the paths of S are P-q.s. continuous.

No other assumption is made on Sat this stage; in particular, no semimartingale property
is assumed. However, structural properties will follow later as a consequence of our no-
arbitrage condition. ,

A simple predictable! strategy is a process H = Z?:, hily,_, -1, where h; = (h-i’ )j<d is
F,_,+-measurable for all i < n, and (7;);<, is a nondecreasing 7 -valued sequence with
79 = 0. Given an initial capital x € R, and a simple predictable strategy H, we define the
associated wealth process

n d
SYRRNING S R

i=1 j=1

Moreover, we define H*™P(x) as the class of all simple predictable processes H such
that X*# remains nonnegative P-q.s. (The superscript “simp” acts as a mnemonic for
“simple” in what follows.) Given T’ € R, and f € LQr(fT), let

yIMP(T, f) := inf {x € R, : 3H € H*™P(x) with X’}’H > fP'CI-S-}

'We define simple predictable strategies with respect to the filtration F, ; however, we recall that the class
of predictable processes on (2, IF) coincides with the class of predictable processes on (€2, F;). The symbol
Jzi—1, ©i] denotes the stochastic interval.
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be the superhedging price of the claim f over the class of simple strategies. We can then
introduce our notion of no-arbitrage of the first kind, stating that the superhedging price
is null if and only if the claim is null P-q.s.

DEFINITION 2.1. We say that NA(P) holds if
VT e Ry and [ € LY(Fr), v""™(T, f)=0 = f=0P-qs

This condition coincides with Kardaras (2010, definition 1.1) when P is a singleton.

3. FUNDAMENTAL THEOREM OF ASSET PRICING

In order to state our version of the fundamental theorem of asset pricing, we first need
to introduce the concept of prior-to-¢ equivalence.

DEeFINITION 3.1. Given two measures P and Q on (2, F), we say that Q is prior-to-¢
absolutely continuous with respect to P, if Q « P holds on the space ({t < ¢}, F; N
{t < ¢})forallt € R.. This relation is denoted by O <, P.If 0 «; Pand P <, Q, we
say that P and Q are prior-to-¢ equivalent and denote this fact by Q ~, P.

In this definition, equivalence is used in the sense of unnormalized measures. Namely,
even if the measures are probabilities on (€2, F), they need not be probabilities on
({t<¢}, Fin{t <t}), and Q ~, P does not mean that P(4) =1 implies O(4) =1,
evenif A € F; N {t < ¢}. A second remark is that local (on F;, for all t € R, ) equivalence
of two probabilities trivially implies prior-to-¢ equivalence, but the converse fails. The
following simple example demonstrates these phenomena.

ExAMPLE 3.2. Suppose that E is a singleton. Then, F is the smallest filtration that
makes ¢ a stopping time and F, N {z < ¢} = {#J, {t < ¢}} holds for all # € R,. It follows
that prior-to-¢ equivalence for any two probabilities P and Q on (2, F) is tantamount
to checking that P{¢ > t} > 0 if and only if Q{¢ > ¢} > 0, for all t € R,. On (R, F),
one can prescribe probabilities endowing any given law to ¢; letting P be such that
P{¢ < oo} =0and Q besuch that Q{¢ > t} = exp(—t) for t € Ry, it follows that Pis a
probabilityon ({t < ¢}, F, N{t < ¢})forallt € (0, 0o), while Q is a strict subprobability.
Also, note that the probabilities P and Q fail to be equivalent on F, whenever ¢ € (0, 00);
indeed, P{¢ <t} =0and Q{¢ <t} > 0 hold for all # € (0, c0).

We refer to Section 1.2 for further discussions on prior-to-¢ equivalence and proceed
with the relevant concept of a local martingale measure.

DEerINITION 3.3. Fix P € P. A probability Q on (2, F) is a prior-to-¢ equivalent
local martingale measure corresponding to P if Q ~, P and there exists a nondecreasing
sequence (t,)ueny C 7, such that

(1) t, < ¢ foralln € Nandlim,_, « 7, = ¢ hold Q-a.s.,
(i) (Star)rer, is an (F;, Q)-martingale for all n € N.

The class of all such probabilities O will be denoted by Q7.

What follows is the main result of this section, the fundamental theorem of asset
pricing. In the present incarnation, it states that the condition NA(P) of Definition 2.1
holds if and only if we can find (at least) one prior-to-{ equivalent local martingale
measure for each possible model P € P.
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THEOREM 3.4. Condition NA|(P) holds if and only if QF # @ for all P € P.

We emphasize that this result necessitates the continuity of S; it is to be compared to the
discrete-time case of Bouchard and Nutz (2015). The following is a direct consequence
of the theorem, but will actually be established in the course of its proof.

COROLLARY 3.5. Let NA|(P) hold. Then, S is a semimartingale under each P € P.

To be precise, we should indicate a filtration in the above statement. In fact, the
P-semimartingale property holds equivalently in any of the filtrations F, F;, or FZ (the
P-augmentation of F.), or more generally in any intermediate filtration F ¢ G C FZ;
see, e.g., Neufeld and Nutz (2014, proposition 2.2). We shall use this fact in Section 5.

Proof of Theorem 3.4. Step 1.We first prove the easy implication; that is, we assume
that QF # ¢ forall P € P. Fix T € R, and f € L%(Fr) with vS"™P(T, f) = 0. Moreover,
let P € P be arbitrary but fixed; we need to show that f = 0 P-a.s.

Indeed, let X'™P be the class of all processes of the form X*/ for x e R, and H €
H™P(x). By assumption, there exists some Q € Q. Let(t,),cn be the localizing sequence
appearing in Definition 3.3. As the stopped process S ., is a Q-martingale, it follows that
X .., is a local Q-martingale for all X € X*™ and n € N. A straightforward argument
then shows that X1y is a Q-supermartingale for all X € AmP,

Let X* € X*™P be such that Xj = 1/nand X} > f'P-q.s., then the above supermartin-
gale property yields that

E9[f1r-] < EC[ X717 ] < E9[Xj]=1/n, n>1.

Therefore, E9[ f17-,] = 0 which implies that Q{ f > 0, T < ¢} =0.As Q ~, Pand¢ =
0o P-a.s., it follows that P{f > 0} = 0. This completes the proof of the “if”” implication
in Theorem 3.4.

Step 2. The converse implication will be established through a third equivalent condi-
tion. To this end, consider NA;(P) := NA({ P}) for a fixed P € P; that is, the condition
that

VT eR;and f € LY(Fr), v T, /)=0 = f=0 P-as,
where
ySmPP(T, f) = inf {x € Ry : 3H € K™ P(x) with X37 > f P-as.}

and H¥™P-P(x) is the class of all simple predictable processes H such that X* is non-
negative P-a.s. We claim that

3.1 NA|(P) holds if and only if NA(P) holds for all P € P.

Indeed, the observation that H¥™P(x) € H*™-”(x) shows that the validity of NA(P) for
all P € P implies NA|(P). To see the converse, suppose that there exists P € P such that
NA|(P) fails. Then, there are T € R and g € L (F7) such that v (T, g) = 0 and
P{g > 0} > 0. Thatis, foranyn € N, there exists H" € H*™-”(1/n)such that X}/ > ¢
P-a.s. Define

" = inf{t eR,: /Y,l/n’H" < 0} e7,, G" = Hnll(),.[rr].

Then, " € 7, as the paths of Sare right-continuous, and thus G” is a simple predictable
strategy. As 1" = oo P-a.s., we have G" = H" P-a.s.; in particular, G” still satisfies
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X% > g P-as. Inaddition, the definition of 7" guarantees that X'/*-¢" is nonnegative
P-q.s—the continuity of S'is crucial in this step. Consider

e 1/n,G" 0
fi=inf X" e L),

and note that v$™P(T, f) = 0 holds by definition. Moreover, we have f > g P-a.s. and
thus P{f > 0} > 0, contradicting NA(P). Therefore, (3.1) has been established.

Step 3. In view of (3.1), it remains to show that NA(P) implies Q # @, for arbitrary
but fixed P € P. Thus, we are essentially in the realm of classical stochastic analysis and
finance; in particular, we may use the tools in the Appendix as well as Kardaras (2010,
2013).

Define X*™P-” as the class of all processes of the form X*# for x e R, and
H e H™PP(x). The set { X € A8™P-7 : X = 1} has the essential properties of Kardaras
(2013, Definition 1.1) needed to conclude that X'5™P-# consists of P-semimartingales, see
Kardaras (2013, theorem 1.3), and that (the immediate extension of) condition NA( P) is
also valid for the closure X7 of X$™P-” in the P-semimartingale topology; see Kardaras
(2013, remark 1.10). In particular, a standard localization and integration argument
(using local boundedness of Sunder P) shows that Sis itself a P-semimartingale.

The set X7 coincides with the class of all P-a.s. nonnegative stochastic integrals of
Sunder P, using general predictable and S-integrable integrands. This is seen by using
density (in the semimartingale topology) of simple stochastic integrals with respect to
general stochastic integrals, as well as a stopping argument that again uses that S has
continuous paths P-a.s. As a result, using condition NA( P) for X', we infer the existence
of a strictly positive (F,, P)-local martingale Y with ¥ = 1 such that YSis an (F,, P)-
local martingale; cf. Kardaras (2010, theorem 4). We can now use Theorem A.6 in the
Appendix to construct a probability O ~, P such that Y is the prior-to-¢ density of Q
with respect to P. Using the facts that Y'Sis an (F., P)-local martingale, ¢ is foretellable
under Q (for the latter, see Definition A.4 and Theorem A.6 in the Appendix) and
Remark A.2, we can construct the required 7, -valued sequence (t,),cn such that S,
is an (F, Q)-martingale for all n € N. The last fact translates to Q € QF and concludes
the proof. 0

4. DYNAMIC PROGRAMMING PROPERTIES OF PRIOR-TO-¢
SUPERMARTINGALE MEASURES

For our proof of the superhedging theorem in Section 5, it will be crucial to know that the
set of (super-)martingale measures satisfies certain dynamic programming properties. In
this section, we impose assumptions on the set P that is the primary object of our model,
and show how these properties are inherited by the corresponding set of supermartingale
measures.

4.1. Additional Assumptions and Notation

From now on, we assume that the Polish space E is a topological vector space and
that the paths w € Q start at the point x, =0 € E.

For x, y € E, we use the convention x4+ y = A if x = A or y = A. Let ¢ > 0. Given
w, ® € Q, we set

(0 ® &)y = wsl[o,/)(s) + (w0 + 67)s—z)l[z,oo)(s)~
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Given also a process Z, we define
Zy(@) = Ziys(0 @ @), 5= 0;

note that a shift in the time variable is part of our definition. We view a random variable
& as a process that is constant in time, so that

£M(0) = E(0 @ Q).

We denote by P(2) the collection of all probability measures on 2, equipped with the
topology of weak convergence. Given a probability R € P(£2), we define R by

RO(A)=Riw® d:ded), AeF,
where R is a regular conditional distribution of R given F; satisfying

Rlo'eQ:o' =won[0,f]}=1, we.

The existence of R is guaranteed by the fact that 7, is countably generated; cf.
Lemma A.7 and Stroock and Varadhan (1979, theorem 1.1.8 and p. 34). It then fol-
lows that

@.1) ER[g"*1 = EX'[£] = EN[E|F)(w) for Rae w € Q.

We shall assume that our set P admits a family of (¢, w)-conditional models. More
precisely, we start with a family {P,(w) : t € Ry, w € Q} of subsets of J(£2) which is
adapted in the sense that P,(w) = P,(®) if wljp,; = @ljo,. In particular, Py = Py(w) is
independent of w. We impose the following structural conditions—compare with Neufeld
and Nutz (2013) and Nutz and van Handel (2013) in the case ¢{ = oo.

DEFINITION 4.1. An adapted family {R,(w): t € Ry, w € Q} of subsets of P(Q)
is analytic and stable prior to ¢ if the following hold for all 1 > s >0, @ € @, and
R e Ry(®).

(A1) {(R,w):weQ, R € Ri(w)} C P(Q) x Q is analytic.”

(A2) R e Ry(& ®; w) for R-a.e.w € {{5° > t}.

(A3) If v:Q+— P(R) is an F,_;-measurable kernel and v(w) € R/(® ®; w) for
R-a.e o e {¢"? > t}, then the measure defined by

R(A) = / /(IA)“S"”(a)/) vR(dw';0) Rdw), AeF,

where vE(w) = V(@) som (@) + RN psacgy (o),
belongs to R(@).

Condition (A1) is of technical nature; it will be used for measurable selection argu-
ments. Conditions (A2) and (A3) are natural consistency conditions, stating that the
family is stable under “conditioning” and “pasting.”

2The definition of an analytic set is recalled in Section 1.1 of the Appendix.
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ASSUMPTION 4.2. We have P = P, for a family {P,(w): t € R, w € 2} which is
analytic and stable prior to ¢. Moreover, S"“ is P,(w)-q.s. continuous prior to ¢"* — ¢,
forallt €e R, and w € Q.

A canonical example of such a set P is the collection of all laws P of [t6 semimartingales
fo o, du + fo o, dW,, each one situated on its own probability space with a Brownian
motion W, drift rate « valued in a given measurable set 4 C R?, and volatility o such that
oo is valued in a given measurable set X of (strictly) positive definite d x d matrices.
In this case, we can take P,(w) = P for all (¢, ) because the sets 4 and ¥ are constant;
cf. Neufeld and Nutz (2017). The continuity condition is clearly satisfied for the canonical
choice S = B and then NA,(P) holds, for instance, when 4 and X are compact.

4.2. Prior-to-¢ Supermartingale Measures

For technical reasons, it will be convenient to work with supermartingale (rather than
local martingale) measures in what follows. The purpose of this section is to define a
specific family of supermartingale measures satisfying the conditions of Definition 4.1; it
will be used to construct the optimal strategy in the superhedging theorem (Theorem 5.1).
We first need to define a conditional notion of prior-to-¢ absolute continuity.

DEFINITION 4.3. Let (1, w) € Ry x Q and P, Q € P(R). We write Q Ko P (with
some abuse of notation) if

O« P on FNni{s<c—t}, seR,.

We also need to consider wealth processes conditioned by (¢, w) € R, x Q. More
precisely, let

4.2) X (w) = {1+ (H® S")hse . He H™, neNJ,
where H™P is the set of all simple predictable processes and

T} o = inf {s = 0: (H® $), ¢ (=1, n)}.

Here, the stopping at —1 corresponds to the nonnegativity of the wealth process, whereas
the stopping at » is merely for technical convenience. The point in this specific definition
of X" (w) is to have a tractable dependence on w; in this respect, we note that the set
H*™P is independent of w.

DEFINITION 4.4. Let (¢, w) € Ry x Q and P € PB(2). We introduce the sets
P (P) = {0 € P(Q) : Q Ko P},
Vi) ={0 e P(R): Xlj o is a O-supermartingale V X € X" (w)},
Qi(w, P) =P (P)N Vi(w),
Q= |J . P.

PePi(w)

The elements of Q,(w) are called prior-to-¢ absolutely continuous supermartingale mea-
sures given (t, w).
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We observe that the family {Q,(w) : t € R, w € Q}isadapted. Furthermore, we recall
from Theorem 3.4 that Qy # ¥ under NA|(P). In the rest of this subsection, we show
that the family {Q,(w)} inherits from {P;(w)} the properties of Definition 4.1.

PROPOSITION 4.5. The family {Q;(w)} satisfies (A1)—(A3).

The proof is split into the subsequent lemmas. For ease of reference, we first state the
following standard result.

LEMMA 4.6. Let A be a Borel space and let (a, w) € A x Q + &(a, w) € Ry be Borel-
measurable. Then, (a, R) € Ax P(Q) — ER[&(a, -)] is Borel-measurable.

Proof. See, e.g., Step 1 in the proof of Nutz and van Handel (2013, theorem 2.3). O

LEMMA 4.7. There exist a countable set H C H"™ and a countable set T C T of
bounded stopping times with the following property.

Given (t, w) € Ry x Qand Q € PB() such that S"° is Q-a.s. continuous prior to {* — t,
we have equivalence between

(1) Xl ;o is a Q-supermartingale for all X € )f,Simp(a)),
(i) Xlpocro— is a Q-supermartingale for all X € X/(w), N
(i) E9[Xo1,-cro(] > E9[ X1, —pro ] for X € X(w)ando < TinT,

where X,(w) is defined like (4.2) but using only integrands H € H. Moreover, if S1o cro—if
is a semimartingale under Q, the above are equivalent to

(iv) Xy cro_q is a Q-supermartingale for all X € X,(w),
where X, (w) is defined like (4.2) but using arbitrary predictable integrands.

Proof. For each s > 0, let F, be a countable algebra generating F,; cf. Lemma A.7.
Let 7 be the set of all stopping times

n
= Z tila,
j=1
wheren e N, #; € Q1,and 4; € ]:",/.. Moreover, let H C HS™P be the set of all processes
n
H=> aly .,
Jj=0
wheren e N,0=1# < <--- <t, € Q4 and each random variable «; is of the form
n
_ i
o =) aly
i=0

for some aj- € Q7 and Aj. € ﬁ/. .
Itis clear that (i)=>(ii)=>(iii). To see that (iii) implies (i), fix O € P(Q)and X € """ (w).
We first observe that it suffices to show that

() EAX,1ppro ) > EQX 1,0 ]forall X € X' ™ (w)andallo < 7in 7.

Indeed, as T contaigs all stopping times of the form t = ul 4+ v1 4 and o = u, where
u <v e Qand 4 € F,, it readily follows that (i") implies the supermartingale property
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of X1po,;+«_ at rational times, and then the supermartingale property on R follows by
right-continuity.

To show that (iii) implies (i’), fix o < t and let T € R, be such that T < 7. The claim
will follow by passing to suitable limits in the inequality

4.3) E X1, g0 4] = EQ X 1y o]

we confine ourselves to a sketch of the proof. Let X € X" (w) be given and recall that
S'¢ is (Q-a.s.) continuous prior to £“® — t.

Using a stopping argument and monotone convergence, we may reduce to the case
where X := X1 cro_ is uniformly bounded. Then, using dominated convergence and
another stopping argument, we may reduce to the case where Xis also uniformly bounded
away from zero prior to " — t. Using standard arguments, we can find a sequence ( H")
of simple predictable integrands with deterministic jump times such that X* := 1 + H¥ ®
S — X uniformly on [0, ¢ — ¢[ in Q-probability. Using that X is bounded and
bounded away from zero, it follows that

X =1+ (Hk ° ASm,a))rjﬁ,k.sl.wll[oygmitl[ - X

uniformly on [0, 7] in Q-probability, for a sufficiently large n € N. After an additional
approximation, we may obtain the same property with H* € H, and we may show using
dominated convergence that the validity of (4.3) for each X* implies the validity for X.
If $"¢ is a semimartingale under Q, one shows that (iii) implies (iv) by using similar
arguments as well as standard results about stochastic integrals, in particular Protter
(2005, theorems I1.21 and IV.2). |

LEMMA 4.8. The family {Q,(w)} satisfies (Al).
Proof. Fixt > 0. It suffices to show that the set
I''={w,P,Q):we, PecPilw), Oc Q(w, P)} C Q2 xP(Q) x P(R)

is analytic. Indeed, once this is established, the graph of Q,(-) is analytic as a projection
of T'; that is, (A1) is satisfied.
As a first step, we show that

(4.4) graph(F;. (1)) :={(w, P, Q) : w € 2, P e P(Q), Q€ Po(P)}

is Borel and in particular analytic. Indeed, it follows from Lemma A.1 that

Peo(P) = [ BeolP, ),
q€Q
where
PP, q) = {Q eP(Q): QK PonF,N{g <" — t}}.

Hence, it suffices to show that
{(w, P, Q) € @ x P(2) x P(R): Q€ Prro(P, q)}

is Borel for fixed ¢. As F, is countably generated, cf. Lemma A.7, a standard argument
(see Dellacherie and Meyer 1978, theorem V.58, p. 52 and the subsequent remarks) shows
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that we can construct a Borel function D, : 2 x P(2) x P(L2) — Rsuchthat D,(-, O, P)
is a version of the Radon-Nikodym derivative of the absolutely continuous part of Q
with respect to P on F,. Then, Q € Pr.(P, ¢) if and only if EX[D,(Q, P)1,-rr0_,] =
0Olq < ¢"® — t}. Using the fact that

(@, P, Q) E"[D,(Q, P)ly_io_]— Qlg < " — 1}

is Borel by Lemmas 4.6 and A.7, we conclude that (4.4) holds.
Let o, v € T and let X € X" (w); recall that X = X% is of the form (4.2). Then, the
map

(@, Q) € Qx PQ) > ¥ (0, Q) = E X 1r o] — EXo15pr0-(]

is Borel as a consequence of Lemma 4.6. If (w, Q) are such that " is Q-a.s. continuous
prior to ¢ — ¢, Lemma 4.7 shows that

Q€ Vi(w) ifandonlyif v (w,0)<0 VHeH, o0 <teT.

Using the obvious embeddings of graph(P,) and graph(});) into Q x PB(2) x P(2), it
follows that

I' = graph(P;) N graph(P;(-)) N graph()})
= graph(P,) N graph(Bo. (NN (] {w77 <0},

HeH,o<teT

Here, we have used that if (w, P, Q) belong to the first intersection, then S is P-a.s. and
hence Q-a.s. continuous prior to ¢ — t; cf. Assumption 4.2. The above representation
shows that I is analytic as a countable intersection of analytic sets. O

LEMMA 4.9. The family {Q,(w)} satisfies (A2).

Proof. For simplicity of notation, we state the proof for s = 0; the extension to the
general case is immediate. Fix Q € Qy; then, Q € Qy(P) for some P € P. We shall show
that

0" € Pro(P')Y N Vi(w) for Q-ae.w € {¢ > 1};

this will imply the lemma because P"* € P;(w)holdsfor P-a.e.w € 2, cf. Assumption4.2,
and thus for Q-a.e.w € {¢ > t}as Q € Qu(P).

Let Y be the prior-to-¢ density process of Q with respect to P (see Remark A.3 for
details on this notion) and set

Y =100+ (Y/ Y)lj1,00),

where we use the convention 0/0 = 0. We first establish that given s > 0, we have Q" «
P on Fy,N{¢"® —t > s} and, in fact,

do"® = Y'°dP"” on F,N{{"—1t> s},

for Q-a.e. w € {¢ > t}. Indeed, let g > 0 be an Fy-measurable random variable, then there
exists an F,-measurable random variable g such that g"® = g. Recalling (4.1), we have
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for Q-a.e. w € {¢ > 1} that
EQW[gli““fbs] = EQ[gl4“>5+f|‘7:’](w)
= EP[( K+[/K)g1{'>S+l|fl](w)
= EP[NY;+121{>X+[|-7:I](0))
= EP“U[XZ’wglgﬁw—ms]-

We have shown, in particular, that Q"* « P on F;, N {¢"® — ¢ > s} forall s € Q.
holds for Q-a.e. w € {¢ > t}, which by Lemma A.1 implies that

0" € Pro(P"”) for Q-ae we (¢ > 1}.
It remains to prove that

4.5) 0" € Y/(w) for Q-ae.we (¢ >t}

Let X € X" (w), then we observe that X = X for some X € X;""". Moreover, let
o € 7 be bounded, then 6 = &"“ — ¢ for some bounded & € 7 satisfying & > ¢ (both X
and & do not depend on w). We have X, = (X"“)sr0_, = (X5)"® (where X; is considered
as a random variable), and thus

E? X 1porng] = E@7[(X5) “1progi0] = E9[ X515 F)(),

for Q-a.e.w € {¢ > t}.If t > 0 € T is bounded and T > & has the obvious meaning, we
deduce from the supermartingale property of Q € ) that

EQW[XaICr.wfzxf] = EQ[XFTIZN?"?’](Q))
> EXe1ec| Fl()
= E2"[ X 1o pac],

for Q-a.e. w € {¢ > t}. Now Lemma 4.7 implies (4.5) and the proof is complete. O
LEMMA 4.10. The family {Q,(w)} satisfies (A3).

Proof. Again, we state the argument for the case s = 0. Let Q € Qy, then Q € Qy(P)
for some P € P = Py. Moreover, let t > 0 and let v be an F,-measurable kernel such that
v(w) € Q;(w) for Q-a.e. w € {¢ > t}. Using Assumption 4.2 and the measurability results
established in the proof of Lemma 4.8, it follows that the set

{(, P, 0):0eQ, PePlo), O=v), Q¢cQw P

is analytic. Let F;* be the universal completion of F,. Applying the measurable selection
theorem, cf. Bertsekas and Shreve (1978, proposition 7.49), we can find an F;*-measurable
kernel p’ such that u'(w) € Py(w) and v(w) € Qi(w, p'(w)) for all w € {¢ > ¢} outside the
F;-measurable Q-nullset

N:={¢}nic>1

and, e.g., u'(w) = P" for w € N'. We can then find an F;-measurable kernel pu and
a P-nullset N such that u(w) = u'(w) for all w ¢ N; cf. Bertsekas and Shreve (1978,
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lemma 7.27). Using Assumption 4.2 and Q <, P, we have

w(w) € Pw)for P-ae w e {¢ > t};
(4.6) v(w) € 9w, u(w))for Q-a.e. w € {¢ > t}.

By Assumption 4.2, the measure
P(A) = f /(IA)””(a)/)pLP(da)/;w) Pdw), AeF
is an element of P; cf. Definition 4.1 for the notation. Set

0(4) := / /(IA)”“’(w’)vQ(da)/;w) Odw), AeF.

Next, we show that Q <, P;i.e., that
Q<P on Fnf{s<¢}, s=0.

Thisis clear fors <tas Q = Q <, P = Pon F,. Lets > t and let 4 € F, be such that
P(AN{s < ¢})=0. Then,

p(@)f{(AN{s <Pt = P{(AN{s < {})"“} =0,
and thus

0"{(AN{s < tH"} = v(@){(AN{s < )"} =0,
for Q-a.e. w € {¢ > t}, by (4.6). It follows that

O(AN (s < 2}) = E2[E1yns-)|Fi]] = 0

as desired.

To see that O € Y, let X X (recall the notation from Lemma 4.7); then X1y [
is a Q-supermartingale. Moreover, noting that X"* is an element of the scaled space
Xi(0)X;"™(w), we have that X"“1jy ;.o is @ v(w)-supermartingale for all » such that
v(w) € Q/(w). Using Fubini’s theorem, it then follows that X1 ,fisa O-supermartingale
as desired.

We have shown that Q € B.(P) Ny C Qp and the proof is complete. O

5. SUPERHEDGING DUALITY

In this section, we provide a superhedging duality and the existence of an optimal strategy.
To this end, we require an enlargement of the set of admissible strategies, allowing for
continuous trading. We first introduce the filtration G = (G;);>0, where

G =F VNT;

here, F; is the universal completion of F, and N is the collection of sets that are
(F, P)-null for all P € P. Moreover, Assumption 4.2 is in force throughout this section.
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Let NA|(P) hold, then Corollary 3.5 implies the (G, P)-semimartingale property of S
for each P € P. Therefore, we may introduce the class £(P) of all predictable processes
on (2, G) that are S-integrable under every P € P. Given H € L(P) and P € P, we can
construct the usual stochastic integral H ® Sunder P (the dependence on P is suppressed
in the notation—but see also Nutz (2012)). For x € R, we denote by H(x) the collection
of all H € L(P) such that x + H ® Sremains P-a.s. nonnegative for all P € P.

To be consistent with the classical literature, the following superhedging theorem is
stated with the set

Q=[J0Q"

PeP

of prior-to-¢ local martingale measures; cf. Definition 3.3. The subsequent Lemma 5.2
provides an equivalent version with the set Q of supermartingale measures.

THEOREM 5.1. Let NA[(P) hold, let T € Ry and let f:Q — [0, 00] be an upper
semianalytic,’ Gr-measurable function with sup oc0 E O[f1;~71] < 0o. Then,

sup E9[ f1,. 7] = min {x: AH e H(x)withx+ (H® Sy > f P-as. forall P € P}.
0<Q

In order to prove this theorem, we first show that Q can equivalently be replaced by
Qo in its statement.

LEMMA 5.2. Let NA|(P) hold, let T € R and let f : 2 — [0, oo] be a Gr-measurable
function. Then,

sup E9[f1,-7] = sup E[f1,.7].
0eQ 0€Qp

Proof. As Q C Qy, we only have one nontrivial inequality to prove. Fix Qy € Qy, and
let P € P be such that Qy <, P. By Remark A.3 in the Appendix, one can construct a
cadlag-adapted process Y° > 0 which is the prior-to-¢ density of Qy with respect to P.
Then, the same arguments as in Larsen and Zitkovi¢ (2007, proposition 3.2) show that
one may write Y = YD, where D isan F_-predictable nonincreasing process with Dy = 1
and Yis a P-a.s. strictly positive cadlag (F,, P)-local martingale such that YS is also
an (., P)-local martingale. Applying Theorem A.6 from the Appendix, we construct
O ~; P whose prior-to-¢ density with respect to P is Y. Clearly,

E°fl;or] = E"[Yrf1 = E"[Yp /1= E9[f1;.1]

as f > 0. It remains to show that Q € @F, which follows in a straightforward way from
the fact that YSis an (IF,, P)-local martingale and that ¢ is foretellable under Q; see
Definition A.4 and Theorem A.6 in the Appendix. O

The remainder of this section is devoted to the proof of Theorem 5.1. In the course of
this proof, 7' > 0 is fixed and f satisfies the assumptions stated in the theorem. We will
use Lemma 5.2 without further mention. To simplify the notation, we may assume that

S= Sl

3The definition of an upper semianalytic function is recalled in Section 1.1 of the Appendix. In particular,
any Borel function is upper semianalytic.
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and moreover, we set

g = f1§>T;

note that g is upper semianalytic like f.

We begin by proving the easy inequality of the theorem. Let x € R and suppose
there exists H € H(x) such that x+ H ® Sy > g P-a.s. for all P € P. Fix Q € Q; then
there exists P € P such that Q ~, P. Remark A.5 from the Appendix shows that ¢ is a
predictable stopping time in the Q-augmentation Gf;) of G,.. It follows that H' := Hljg ¢
is predictable in G, and thus x+ H' ® Sis a nonnegative local martingale under Q;
in particular, a Q-supermartingale. Using that g = 0 on {¢ < T}, we see that x + H' ®
Sr > g Q-a.s., and now taking expectations yields x > E9[g]. As Q € Q was arbitrary,
the inequality “>" of the theorem follows.

To complete the proof of the theorem, we shall construct in the remainder of this
section a strategy H satisfying

(5.1) sup E[g]+ H® Sy >g P-as. forall PeP.
0eQ

Given ¢ > 0 and an upper semianalytic function /2 > 0 on 2, we define

E)(w):= sup E9r"*], weg.
0€Q,(w)

Moreover, we denote F* = (F/)cr. .

LEMMA 5.3. The process {€,(g)}ieo, 11 is a (Q, F*)-supermartingale for all Q € Q,, and
in particular for all Q € Q.

Proof. Lets < t. In view of Proposition 4.5 and Lemma A.7, we may adapt the proof
of Nutz and van Handel (2013, theorem 2.3) to establish that £(g) is F, -measurable and
upper semianalytic, that

E(gles)(w) = E(&(g)l-)(w) forall we Q,
and that

E(glo,) = esssup? EC[E(g)1,-,|F] Q-as. forall Qe Q,
0eQ?

where Q¢ ={Q' € Q: Q' = Qon F}.As{¢ > T} C {¢ > t}fors < T,wehavegl,., =
1712 = f1.o7 = g. Hence, the above simplifies to

(5.2) &) =&(E(g), s<t=T
and

(5.3)  &(g) =esssup? EC[E(g)|F;] OQ-as. forall Qe Q, s<i<T.
0eQ?

Our assumption that &y(g) <oo and (5.2) applied with s =0 yield that
SUppco E 9[&,(2)] < oo for all ¢; in particular, &£ (g) is integrable under all Q € Q. More-
over, (5.3) yields that

&(g) = E%E(IF] = ECE(9IF;] Q-as. forall Qe Q, s<t<T,
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which is the desired supermartingale property. |

LEMMA 5.4. Define

Z, :=limsup&(g) for t<T and Z;:=Er(g),
rit,reQ

let N be the set of all w € Q such that Z (o) is not cadlag, and
Z = ZlNz‘.

Then, (Z)icio, 11 1s a cadlag, G -adapted process that is a Q-supermartingale for all Q € Q.
Moreover,

(5.4) Zy<sup E9g] and Zr=g P-as. forall PeP.
0eQ

Proof. Recall Lemma 5.3. The modification theorem for supermartingales (Dellacherie
and Meyer 1982, theorem VI.2) yields that N is Q-polar, the limit superior in its def-
inition is actually a limit outside a Q-polar set, and moreover, that Z is a (G, Q)-
supermartingale for all Q € O.

To see that N € N7, we fix an arbitrary P € P and show that N is P-null. Indeed, we
may decompose N as

N=NN{t =THUNN{¢ > T}).

The first set is P-null because {¢ < oo} was assumed to be P-polar. We know that there
exists Q € Q such that P ~, Q. As N is Q-null relative to F7, there exists an Fp-
measurable Q-nullset N¢ such that N € N¢. Now P ~; Q implies that N¢ N {¢ > T}
is P-null, and then so is NN {¢ > T}. As a result, we have N € N7 and in particular
N € Gy. This implies that Z:= Z'1 . is still a (G, Q)-supermartingale for all Q € Q,
while in addition, all paths of Z are cadlag. Moreover, for any P € P, it follows from
Gr = Fr P-as.and (5.3) that Zr = Z, = E7(g) = g P-as.

It remains to show the first part of (5.4). As 7 is Gy -measurable, Gy, is equal to Fo
up to P-nullsets for any P € P, and any P € P is dominated on Fy, by some Q € Q, it
suffices to show that

Zy < sup E9[g] = &(g) O-as.
0eQ

forall Q € Q. The proof of this fact is similar to the proof of Nutz (2015, inequality (3.3)).
Namely, it follows from Lemma 5.3 and the construction of Z that

sup E9[Z)] < sup E9[g].
QeQ Qe

Then, one shows that supy.o E 917 dominates the Q-essential supremum of Z, for
any Q € Q by verifying that Q is stable under Fy,-measurable, equivalent changes of
measure—see Theorem A.6. We omit the details. |

LEMMA 5.5. Let Q € Q. Then, there exists a Gg-prediclable process HC that is S-
integrable under Q such that

Z— H?® S isnonincreasing Q-a.s. on [0, ¢[N]0, T7.
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Proof. Let o, be an announcing sequence for ¢ associated with Q and sett, := 0, A T.
Let Q' be a probability on F7 that is equivalent to Q and such that S™ is a Q’'-local
martingale; we show that Z™ is a Q'-supermartingale. Indeed, let Y = (Y));e0,77 be
the density process of Q' with respect to Q and the filtration Gg, a strictly positive
Q-martingale with unit expectation. Define

Y =Y

in 1205

then Y” is the density process of a probability Q" with respect to Q and it is elementary
to verify that Q” € Q. Thus, Zis a Q”-supermartingale by Lemma 5.4. As Q" = Q' on
G, +, it follows that Z™ is a Q'-supermartingale as desired. As a result, we may apply the
classical optional decomposition theorem (see Follmer and Kabanov 1998) to obtain an
integrand H2" such that

Zn — H9" ® §% s nonincreasing Q-a.s.

The result follows by a passage to the limit n — oo. O

End of the Proof of Theorem 5.1. We can now construct H as in (5.1) by arguments
similar to the proof of Nutz (2015, Theorem 2.4). To this end, we recall that S = Sl .
Moreover, as we will be working in the filtration G and N7 C Gy, we may assume without
loss of generality that all paths of S'are continuous prior to ¢.

The (d + 1)-dimensional process (S, Z) is essentially a G -semimartingale under all
Q € Q; that is, modulo the fact that S may fail to have a left limit at ¢. Following the
construction of Neufeld and Nutz (2014, proposition 6.6),* there exists a G_.-predictable
(and hence G-predictable) process C'># with values in S7! (the set of nonnegative
definite symmetric matrices), having 9-q.s. continuous and nondecreasing paths prior
to ¢, and which coincides Q-a.s. with ((S, Z)°)¢ under each Q € Q, prior to ¢. Here,
(S, 2)°)2 denotes the usual second characteristic of (.S, Z) under Q; i.e., the quadratic
covariation process of the continuous local martingale part of (S, Z).

Let CS be the d x d submatrix corresponding to .S and let C5% be the d-dimensional
vector corresponding to the quadratic covariation of S and Z. Let A4, := tr CS be the
trace of CS, then prior to ¢, C5 <« A Q-q.s. and C5% « 4 Q-q.s. (i.e., absolute continuity
holds outside a polar set). Thus, we have dCS = ¢5d 4 Q-q.s. and dC5% = ¢57d A Q-q.s.
for the derivatives defined by

! Ci -G
¢ = Z’rsl{z;‘esi}» ¢S .= limsup W
n—00 t — A(t—1/n)v0
and
Sz S7Z
Ct - C(tfl/n)\/o

37

SZ ~SZ
t t 1 t

=) N pszepay, €7 = limsup

nooo A — Au—1mno

where all operations are componentwise and 0/0 := 0. Let (¢%)® be the Moore-Penrose
pseudoinverse of ¢S and define the G-predictable process

S4(c®)®  on [0, ¢[N[O, T1,
H = .
0 otherwise;

4That proposition does not use the separability assumptions on the filtration that are imposed for the
main results of Neufeld and Nutz (2014).
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we show that H satisfies (5.1).
Fix Q € Q. By Lemma 5.5, there exist an S-integrable process H< and a nondecreasing
process K ¢ such that

(5.5) Z=27+H?¢S—K? Q-as.on]0, [0, T].
It follows that
d(S, Z)y = H%d(S) OQ-as.,
or equivalently
3% = H%S Qxddae.
By It6’s isometry, this implies that H is S-integrable under Q and
HeS=H?eS Q-as on]0, [N[0, T].
Now (5.5) implies that
Z— Zy— H*® S isnonincreasing and nonpositive Q-a.s. on [0, Z[N]0, TT.
Noting that
Zli; = Eq (o)< = Ep(flearle<) = €4 (0) =0 Q-as,,
we see that Z=0on [0, 7]\ [0, ¢[. As H also vanishes on that set, we conclude that
Z—7Zy— H*® S isnonincreasing and nonpositive Q-a.s. on [0, 77.

In particular, Zy+ H® S > 0 Q-a.s. As Q € Q was arbitrary, it easily follows that Z, +
H*® S>0 P-a.s. and that

Z—7Zy— H*® S isnonincreasing P-a.s. on [0, T

for all P € P. Thus, we have

sup E9[g]l+ H® S > Zy+ H® Sy > Zr=g P-as. forall PeP

0e€Q
and H € H(x) for x =supy.o E9[g]. This completes the proof of (5.1) and thus of
Theorem 5.1. 0
APPENDIX A

A.1. Notions from Measure Theory

Given a measurable space (€2, A), let B(L2) the set of all probability measures on .A. The
universal completion of A is the o-field N pem(g)AP , where A” denotes the P-completion
of A. When Q is a topological space with Borel o-field B(£2), we endow B(€2) with the
topology of weak convergence. Suppose that 2 is Polish, then B(2) is Polish as well. A
subset A4 C Q is called analytic if it is the image of a Borel subset of another Polish space
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under a Borel-measurable mapping. Analytic sets are stable under countable union and
intersection, and under forward and inverse images of Borel functions. Any Borel set is
analytic, and any analytic set is universally measurable. A function f : Q — [—o00, 00] is
upper semianalytic if { f > c} is analytic for every ¢ € R. In particular, any Borel function
is upper semianalytic. We refer to Bertsekas and Shreve (1978, chapter 7) for these results
and further background.

A.2. Follmer’s Exit Measure

Important references on Follmer’s exit measure are Follmer (1972) and Meyer (1972);
see also Perkowski and Ruf (2015) and the references therein for recent developments.
The first result of this section provides an alternative, seemingly stronger characterization
of the notion of prior-to-¢ absolute continuity—compare with Definition 3.1.

LEMMA A.1. Let & be a random time and P, Q € B(2). Then,
(A1) PAN{r <&} =0 = QAN{t<&H)=0 VtreT,, Ac F.,
holds if and only if

(A2) PAN{g<EHh=0 = QAN{g<E)=0 VgeQ,, AcF,

Proof. Itis clear that (A.1) implies (A.2). For the converse, we first note that it suffices
to check (A.1) for F-stopping times taking finitely many values in Q U {co}. Indeed, let
T € 7, be given, then

o = inf {(k+ 127" : 0 <k<n2', t <k2™"}

(where inf # = o0) is a sequence of such stopping times and 7, | t. Now 4N {7, < &}
increases to AN {t < &} for 4 € F, C F,,; therefore, if (A.1) is valid for each t,, then
P(AN{t < &}) =0 implies P(AN {1, < &}) =0 which, in turn, implies Q(AN {1, <
&} =0, and thus Q(AN {r < &}) = 0 by monotone convergence.

Any F-stopping time t with finitely many values in Q; U {oo} is of the form 7 =

Z?:I ti14,wheren e N, ; € Q1 U {oo}, and 4; € F, are disjoint. Hence,

n

RAN{t <& =) R(AN{r <6}N 4 N{; <&})), Re(P,Q}
i=1

and it follows that (A.2) implies (A.1). O

REMARK A.2. Let Q ~, P. It is a consequence of Lemma A.l that O and P are
equivalent on 7, N {t < ¢} forany t € 7. Suppose now that (t,),cn is a nondecreasing
T -valued sequence such that 7 := lim,_. o, 7, > ¢ holds in the Q-a.s. sense. As {t < ¢} €
Fri N{r < ¢} has zero Q-measure, we conclude that P{t < ¢} =0, i.e,, that T > ¢ also
holds in the P-a.s. sense. In particular, if = oo P-a.s., it follows that T = oo P-a.s.

REMARK A.3. Let P and Q be two probability measures on (€2, F) with Q <, P and
¢ = oo P-a.s. By utilizing appropriate versions of the Radon-Nikodym theorem and a
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cadlag modification procedure, one may establish the existence of a P-a.s. nonnegative
cadlag adapted process Y such that

(A3) Q04 N{t <) =E"[¥141,.] forall teT, and 4, € Fyy.

The above process Y will be called the prior-to-¢ density process of Q with respect to P.
It is strictly positive under P when Q ~, P. Note that (A.3) uniquely specifies Q, as the
classof sets A7 N{T < ¢}, T € Ry, Ay € Fr, generates F,_ = F and is also a w-system.
Therefore, the specification of the prior-to-¢ density process of Q with respect to P is
uniquely defined up to P-evanescent sets.

Suppose that Q ~, P and Y is the prior-to-¢ density process of Q with respect to
P. In particular, as Q and P are equivalent on Fo, and ¢ > 0, (A.3) gives EF[Y] = 1.
Furthermore, for 0 < s < ¢t < oo and A4; € F;, note that

EPY14]= Q4 N{t <)) < Q4 Ni{s <) = ETX14],

which implies that Y'is an (F, P)-supermartingale.

Theorem A.6 that follows, essentially due to Follmer (1972), is a converse to the
previous observation: starting with a probability P and a candidate density process Y,
a probability Q is constructed that has Y as a prior-to-¢ density with respect to Q. The
statement requires the following notion.

DEFINITION A.4. We say that ¢ is foretellable under a probability Q if there exists a
7. -valued sequence (7, ),en such that Q{r, < ¢} = 1forallnand Q{lim, . 7, = ¢} = 1.

Itis clear that the above sequence of stopping times can be chosen to be nondecreasing.
Also, note that foretellability of ¢ does not remain invariant under prior-to-¢ equivalent
probability changes.

REMARK A.5. By He, Wang, and Yan (1992, Theorem 4.16), ¢ is foretellable under Q
if and only if ¢ is Q-a.s. equal to a predictable stopping time on (2, F.).

THEOREM A.6. Let Y be a strictly positive (F., P)-supermartingale with ET[ Y] = 1.
Then, there exists Q ~, P such that Y is the prior-to-¢ density process of Q with respect
to P. Furthermore, if Y is actually an (F., P)-local martingale, ¢ is foretellable under Q.

Proof.  Recall that for & € 7., the o-field F:_ is generated by the collection
{4, N{s <&}:5>0, A € F,}. With this definition in place, we observe that F = F,_,
because B; is F,_-measurable for all # > 0. Indeed, Borel subsets of E'U {A} are of the
form A or AU {A}, where 4 € B(E), and for any such A, we have {B;, € A} = {B, €
AAN{t<¢yeFeoand{B € AU{AY}=({B e AAN{t <¢HU{L <t} e Fr_.

By Perkowski and Ruf (2015, Section 4.2), one can construct § € 7, with P{§ < oo} =
0 and a probability Q° on (R, F;_), such that

Q"(A: Nt < &) = E"[ Y11, ]

holds for all € 7, and A4, € F,,. In particular, Q°{€ > 0} = EF[}]=1. As 4, N
{t <& ¢} e Frpforall 4, € Fo, the above formula also holds for & := (€ A ¢)1e-0 +
¢1z—o. Thus, we may assume that & € 7. satisfies 0 < £ < ¢ and P{§ = ¢} = I, and that
0%(A4, N{t < &}) = EP[Y,141,_¢] holds for all € 7, and A4, € F,,. We shall extend
0" to a probability Q on F = F,_ such that Q{¢ = ¢} = 1 holds; this will immediately
establish (A.3). Define a map ¢ : Q — Q as follows: for w € , set ¥,(w) = w, when
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t < &(w)and ¥, (w) = A when &(w) < t. As F is generated by the coordinate projections
and

WeA=(o:wo e ANEIN{t <EDU{t>&} e Fi_

holds for all # € R, and Borel subsets A of E = E U {A}, it follows that ¥ is (F:_/F)-
measurable. By construction, ¢ o ¢ = £. We claim that & < & o ¥ holds as well. Indeed,
as & At is F,_-measurable for all 1 € R,, Dellacheric and Meyer (1978, theorem 96,
chapter IV) imply that & At = (§ A t) ok, where k is the killing operator defined via
k(@) = wljo,;y + Alj0) for w € Q. As&(w) At =& o ki(w) A t holds for all (w, t) € Q x
Ry, plugging in ¢ = £(w) gives

§(w)=§ ok NE(@) =Eod(w) NE(w), we,

where we have used that k() (w) = () holds for all w € Q. Therefore, £ < & o . The
last inequality, combined with § < ¢ and ¢ oy = &, gives { oy = £ o . Define Q on
Fvia Q(A4) = 0°(v~'(A)) for all 4 € F. By construction, Q is an extension of Q°, and
(A.3) follows as

olg < ¢} = 0"&(y) < ¢c(y¥)} = Q") = 0.

Finally, if Y is an (F,, P)-local martingale, let (z,) be a localizing sequence and call
T := lim,_, » 7,. Note that T = co = ¢ holds in the P-a.s. sense. By Remark A.2, t > ¢
holds in the Q-a.s. sense. Furthermore, from (A.3), we obtain Qfr, < t} = Ep[Y;,] =1
for all n € N. Therefore, ¢ is foretellable under Q. O

A.3. On the Path Space Q

The goal of this section is to show that Q carries a natural Polish topology, which
is required for the measurable selection arguments in Sections 4 and 5. To the best of
our knowledge, this result is not contained in the previous literature—only the Lusin
property is mentioned; see, e.g., Meyer (1972).

Let D = D, ([0, 00); E) be the usual Skorokhod space of E-valued cadlag paths on
[0, c0) starting at the point x, € E and let 8, be its usual metric, rendering D a Polish
space. We may think of a path w € Q as consisting of a path ® € D and a lifetime z €
(0, oo]; in this context, it is useful to equip (0, oo] with the complete metric d(g,oo)(z, ) :=
|z=! — 21|, where co~! := 0. More precisely, given z € (0, o], let

e(t) = t if z = o0,
Tz =) ifz < oo,

We note that e, : [0, c0) — [0, z) is a monotone bijection; thus, precomposition with e,
turns a path w € Q with lifetime z = ¢(w) into an element of D. As a result, we can define

Sa(w, ') := d(,00) (£ (@), $(@)) + 8o (® 0 €1 (), @ 0 €0r), @, 0 € Q.

LEMMA A.7. The space (2, 8q) is Polish and its Borel o -field coincides with F. Moreover,
Fr = 0(Bine, t € Ry) for any F-stopping time t; in particular, F; is countably generated.
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Proof. Itis clear that 8g defines a metric on Q2. Moreover, the mapping

Q—>Dx(0,], o> (woerw), {(w)

admits the inverse

D x (0,00] = Q, (@,2) > (@oe; ).+ Al

By the definition of 8, these mappings constitute an isometric isomorphism between Q2
and D x (0, co]; in particular, 2 is Polish like D x (0, o<].

Let B(2) be the Borel o-field on Q. To prove that 7 C B(2), it suffices to show that
the evaluation B, : w > w, is Borel-measurable for any fixed ¢ > 0. To this end, note that
the functions

w> (@) €0,00, w0 woeyeD, w e, (1) €l0,00)

are continuous on €2. Let B be the canonical process on D and recall that (7, @) — B/(®)
is jointly Borel-measurable. It then follows that

w B,(a)) = B@ﬂi},(!)(a) o EC(w)) 1[0,(((0))(0 + A 1[{(60)‘00)([)

is Borel-measurable as well.
To prove the reverse inclusion B(2) C F, it suffices to show that any continuous
function f : Q — R is F-measurable. Indeed, the maps

o {(w)e(0,00], wr> woer,) €D

are clearly F-measurable. Moreover, any function f on € induces a unique function f
on D x (0, co] satisfying

J@) = f(0oew. t@). we.

If fis continuous, it follows that f is continuous and hence the composition w > f(w) =
Flwo e:(w), {(w)) is F-measurable. This completes the proof that 7 = B(£2).

The last claim follows from the fact that E is Polish and standard arguments; see
Stroock and Varadhan (1979, lemma 1.3.3 and exercise 1.5.6). O
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