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Abstract

A financial market model where agents trade using realistic combinations of simple (i.e., finite com-
binations of buy-and-hold) no-short-sales strategies is considered. Minimal assumptions are made on the
discounted asset-price process — in particular, the semimartingale property is not assumed. Via a natural
market viability assumption, namely, absence of arbitrage of the first kind, we establish that discounted
asset-prices have to be semimartingales. Our main result can also be regarded as reminiscent of the Funda-
mental Theorem of Asset Pricing.
© 2011 Elsevier B.V. All rights reserved.
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0. Introduction

In the mathematical modeling of discounted asset-price processes in frictionless financial
markets, semimartingales play a central role. The main reason is the celebrated general version
of the Fundamental Theorem of Asset Pricing (FTAP) in [13]; there, the powerful tool of
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stochastic integration with respect to general predictable integrands, that semimartingales are
exactly tailored for, played a crucial role. The FTAP connects the economical notion of No
Free Lunch with Vanishing Risk (NFLVR) with the mathematical concept of existence of an
Equivalent Martingale Measure (EMM)), i.e., an auxiliary probability, equivalent to the original
(in the sense that they have the same impossibility events), that makes the discounted asset-
price processes have some kind of martingale property. For the above approach to work one
has to utilize stochastic integration using general predictable integrands, which translates to
allowing for continuous-time trading in the market. Even though continuous-time trading is of
vast theoretical importance, in practice it is only an ideal approximation; the only feasible way
of trading is via simple, i.e., combinations of buy-and-hold, strategies.

Recently, it has been argued that existence of an EMM is not necessary for viability of the
market; to this effect, see [23,25,14]. Even in cases where classical arbitrage opportunities are
present in the market, credit constraints will not allow for the arbitrage to be scaled to any desired
degree. It is rather the existence of a strictly positive supermartingale deflator, a concept weaker
than existence of an EMM, that allows for a consistent theory to be developed.

The purpose of this work is to provide an answer to the following question:

Why are semimartingales important in modeling discounted asset-price processes?

A partial reason pinpointing the importance of semimartingales in modeling discounted asset-
price processes is already present in [13]: market viability, formulated by requiring the NFLVR
property for simple trading, already imposes the semimartingale property on discounted asset-
price processes, as long as the latter processes are locally bounded. In this paper, we elaborate
on the previous idea, undertaking a different approach, which ultimately leads to an improved
result.! (There are papers dealing with market viability when only simple trading is involved and
which allow for non-semimartingale discounted asset-price processes; see, for example, [2,5].)
In [1,6,22], the semimartingale property of discounted asset-price processes is obtained via the
finite value of a utility maximization problem; this approach will also be revisited here.

All the conditions that have appeared previously in the literature are only sufficient to ensure
that discounted asset-price processes are semimartingales. Here, we shall also discuss a necessary
and sufficient condition in terms of an extremely weak market viability notion that only involves
simple, no-short-sales trading, under minimal structural assumptions on the discounted asset-
price processes themselves. Our main result is reminiscent of (but involves much weaker notions,
both on the economics as well as on the mathematics side, than) the FTAP, and can actually be
regarded as a “simple, no-short-sales trading” version of [18, Theorem 4.12].

The structure of the paper is as follows. In Section 1, we introduce the market model, simple
trading under no-short-sales constraints. Then, we discuss the market viability condition of
absence of arbitrage of the first kind for such processes, as well as the concept of strictly positive
supermartingale deflators. After this, our main result, Theorem 1.3, is formulated and proved,
which underlines once more the importance of semimartingales in financial modeling. Section 2
deals with remarks on, and ramifications of, Theorem 1.3. We note that, though hidden in the
background, the proofs of our results depend heavily on the notion of the numéraire portfolio
(also called growth-optimal, log-optimal or benchmark portfolio), as it appears in a series of
works: [21,24,3,16,25,26,18,11], to mention a few.

I After the present work was completed, the very interesting paper [4] appeared, which contains considerably more
precise results than [13]. However, the approaches of the two papers are different.
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1. The semimartingale property of discounted asset-price processes
1.1. The financial market model and trading via simple, no-short-sales strategies

The random movement of d € N risky assets in the market is modeled via cadlag, non-
negative stochastic processes St where i € {1,...,d}. We assume that all wealth processes
are discounted by another special asset which is considered a “baseline”. The above process
S = (S")izlw)d is defined on a filtered probability space ({2, F, (]-})teR+ , P), where (fl)teRJr
is a filtration satisfying J; € F for all + € Ry, as well as the usual assumptions of right-
continuity and saturation by P-null sets of F.

Observe that there is no a priori assumption on S being a semimartingale. This property will
come as a consequence of a natural market viability assumption.

In the market described above, economic agents can trade in order to reallocate their wealth.

Consider a simple predictable process 8 = Zl}:l D J-]I]]Tj_l,fj]]. Here, 19 = O, 'and for all
J € {l,...,n} (where n ranges in N), 7; is a finite stopping time and ¥; = (z‘}})izl,m,d is
]—",jfl—measurable. Each 7;_1, j € {1,...,n}, is an instance when some given economic agent

may trade in the market; then, ¢ is the number of units from the ith risky asset that the agent
will hold in the trading interval ]7;_1, ;]. This form of trading is called simple, as it comprises
of a finite number of buy-and-hold strategies, in contrast to continuous trading where one is
able to change the position in the assets in a continuous fashion. This last form of trading is
only of theoretical value, since it cannot be implemented in reality, even if one ignores market
frictions. Starting from initial capital x € R and following the strategy described by the simple
predictable process 6 := Z’;zl ¥Ije;_y,7;7- the agent’s discounted wealth process is given by

. n
x50 = x + /0 (O, dS;) = x + Y (0, Se;n. — St;_n)- (1.1)
j=1

Note that “(-, -)” is used throughout to denote the usual Euclidean inner product on R?. This
should not be confused with the angle-bracket process, which is not used at all in this paper.
The wealth process X% of (1.1) is cadlag and adapted, but could in principle become
negative. In real markets, some economic agents, for instance pension funds, face several
institution-based constraints when trading. The most important constraint is prevention of having
negative positions in the assets; we plainly call this no-short-sales constraints. In order to ensure
that no short sales are allowed in the risky assets, which also include the baseline asset used for
discounting, we define X5(x) to be the set of all wealth processes x*0 given by (1.1), where
0 = Z;Zl ¥ Iy, ,7;7 is simple and predictable and such that ﬁ; > 0 and (9}, STJ._]> < Xﬁ/fl
hold for all i € {1,...,d} and j € {1,...,n}. (The subscript “s” in X5(x) is a mnemonic
for “simple, no-short-Sales”; the same is true for all subsequent definitions where this subscript
appears.) Note that the previous no-short-sales restrictions, coupled with the nonnegativity of
Si,ie{l,...,d},imply that 6/ > Oforalli = 1,...,d and (0, S_) < X™’. (The subscript
“_” is used to denote the left-continuous version of a cadlag process.) It is clear that Xg(x) is
a convex set for all x € R. Observe also that X5(x) = xAX5(1) for all x € R4 \ {0}. Finally,

define X5 == Xs(x).

X€R+

2 The angle-bracket process is defined as the predictable compensator of the quadratic covariation process between
two semimartingales, whenever this is well defined. At any rate, and as we already noted, we are not assuming any a
priori semimartingale property for the involved processes.
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1.2. Market viability

We now aim at defining the essential “no-free-lunch” concept to be used in our discussion.
In a market where only simple, no-short-sales trading is allowed, we shall say that there are
opportunities for arbitrage of the first kind if there exist 7 € R4 and an Fr-measurable random
variable & such that:

e P[£ >0] =1and P[¢ > 0] > 0O;
e for all x > O there exists X € Xs(x), which may depend on x, with P[X7 > &] = 1.

If there are no opportunities for arbitrage of the first kind, we shall say that condition NA1s holds.

It is immediate to see that an arbitrage of the first kind in a market when only simple, no-short-
sales trading is allowed gives rise to a free lunch with vanishing risk, as the latter is defined for
simple trading in [13, Section 7]—one has to simply rescale the wealth processes involved in the
definition of an arbitrage of the first kind to start from zero initial wealth. Therefore, condition
NA1; is weaker than condition NFLVR stated for simple trading. (Given Proposition 1.1 below,
one can also show this fact using the same ideas as in [18, Proposition 4.2].)

The next result describes an equivalent reformulation of condition NA1g in terms of bound-
edness in probability of the set of outcomes of wealth processes. This is essentially condition
“No Unbounded Profit with Bounded Risk” of [18] for all finite time-horizons in our setting of
simple, no-short-sales trading.

Proposition 1.1. Condition NAlg holds if and only if, for all T € Ry, the set {X1 | X € Xs(1)}
is bounded in probability, i.e., | limy_, o SUPx e x(1) P[X7 > €] =0 holds forall T € R,..

Proof. Using the fact that Xs(x) = xAXs(1) for all x > 0, it is straightforward to check that
if an arbitrage of the first kind exists on [0, T'] for some T € R then {X7 | X € X5(1)} is not
bounded in probability. Conversely, assume the existence of 7 € R such that {X7 | X € X5(1)}
is not bounded in probability. As {X7 | X € X5(1)} is further convex, [8, Lem~ma 2.3] implies
the gxistence of £2, € Fr with P[£2,] > 0 such that, for all n E,N’ there exists X" € Xs(1) with
Pl{X% < n}N 2] < P[2,]/2" . Foralln € N, let A" = {X% > n} N 2, € Fr. Then, set
A= ﬂneN A" € Fr and & = Il4. It is clear that & is Fr-measurable and that P[§ > 0] = 1.
Furthermore, since A C (2, and

[U 2,\ A" } Z]P’ [2,\ A"]

neN neN
P[$2,] P[]
Z on+l = 2 7’

P2, \ A

Y PlXE <nine] <

neN neN

we obtain P[A] > 0, i.e., P[§ > 0] > 0. Forall n € N set X" := (l/n))N(”, and observe that
X" e Xs(1/n)and & =14 < Iy < X’; hold for all n € N. It follows that the market allows for
opportunities for arbitrage of the first kind, which finishes the proof. [

Remark 1.2. The constant wealth process X = 1 belongs to AX5(1). Then, Proposition 1.1
implies that condition NA g is also equivalent to the requirement that the set {X7 | X € X5(1)}
is bounded in probability for all finite stopping times 7.
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1.3. Strictly positive supermartingale deflators

Define the set Vs of strictly positive supermartingale deflators for simple, no-short-sales
trading to consist of all cadlag processes Y such that P[Yp = 1, andY; > OVt € Ry] = 1,
and YX is a supermartingale for all X € A5. Note that existence of a strictly positive
supermartingale deflator is a condition closely related, but strictly weaker, to existence of
equivalent (super)martingale probability measures. (See Section 2.3 for a quite trivial example
in this respect.)

1.4. The main result

Condition NA1s, existence of strictly positive supermartingale deflators and the semimartin-
gale property of S are immensely tied to each other, as will be revealed below.

Define the (first) bankruptcy time of X € Xstobe ¢X = inf{r € Ry | X, = 0 or X; = 0}.
We shall say that X € Xg cannot revive from bankruptcy if X; = 0 holds for all t > ¢X on

{§X < o0}. As §' € Xgfori € {1,...,d)}, the previous definitions apply in particular to each
S, iell, ..., d}. .
Before stating our main Theorem 1.3, recall that S*, i € {l,...,d}, is an exponential

semimartingale if there exists a semimartingale R’ such that S = Séé' (R"), where “£” denotes
the stochastic exponential operator.

Theorem 1.3. Let S = (Si)izl,_,_,d be an adapted, cadlag stochastic process such that St s
nonnegative for all i € {1, ..., d}. Consider the following four statements:

(1) Condition NAlg holds in the market.

(i) Vs # 0. |
(iii) S is a semimartingale, and S' cannot revive from bankruptcy for alli € {1, ..., d}.
(iv) Foralli € {1, ...,d}, St is an exponential semimartingale.

Then, we have the following:
(1) It holds that (i) < (ii) = (iii), as well as (iv) = (i).
(2) Assume further that Sési, > 0 holds on {¢5' < oo} foralli € {1, ...,d)}. Then, we have the

equivalences (1) < (il) < (iil) < @v).

1.5. Proof of Theorem 1.3, statement (1)

Proof ((i) = (ii)). We start the proof by stating and proving a result that is, in a certain sense, a
“static” version of implication (i) = (ii) of Theorem 1.3. Define the d-dimensional simplex

,,,,,

Lemma 1.4. Let F' C F be a o-field over 12. Also, let x be some [—1, 00)*-valued and
F'-measurable random vector. Then, there exists some A valued and F'-measurable random
vector p with the property that

E[1+(mx) f,]fl
1+ {p, x)

holds for any A%-valued and F'-measurable random vector 7.
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Proof. Define C as the set of nonnegative random variables of the form 1 + (m, x), where 7
ranges through all A?-valued and F'-measurable random vectors. It is clear that C is a convex set.
Furthermore, C is bounded in probability, since the finite-valued random variable Zle (14 xH
dominates [P-a.s. every element of C. We claim that C is also closed in probability. To wit, suppose
that a C-valued sequence (1 + (7", x)),eN converges in probability to a nonnegative random
variable f. By passing to a subsequence if necessary, we may assume that the convergence
actually holds in the P-a.s. sense. Then, since A¢ is a compact set, the randomized version
of the Bolzano—Weierstrass theorem (see, for example, [17, Lemma 2]) implies that there
exists an increasing sequence (ny)geny of N-valued F'-measurable random variables such that
7 = limg_, o "% exists. Of course, 7 is a A4-valued and F'-measurable random vector. The
fact that IP’[lim,,_wo(l + (7", X)) = f] = 1 implies P[limk_mo(l + (", X)) = f] =1,
therefore, P[1 + (m, x) = f] = 1. The previous argument establishes that C is closed in
probability.

Since C is convex, bounded in probability and closed in probability, [20, Theorem 1.1(4)]
implies that there exists a A4-valued and '-measurable random vector p with the property that

E[M] <1 (12)
L+ {p, x)

holds for all A9-valued and F'-measurable random vectors 7. Now, for any A4 _valued and
JF'-measurable random vector 7 and any A € F', ma = mls + pli\ 4 is itself a A4 -valued and
F’-measurable random vector. Replacing 7w by 74 in (1.2), after some simple algebra we obtain

E [1 + (7, x)
1+ {p. x)
As the latter holds for all A € F7, the proof of Lemma 1.4 is complete. [

]IA:| < P[A].

We proceed by stating and proving another auxiliary result that will help to establish
implication (i) = (ii) of Theorem 1.3. Lemma 1.5 can be seen as a “deflator version” of the
discrete-time Dalang—Morton—Willinger version of the FTAP—see the original paper [12], as
well as [28] for a rather elementary and short treatment. The idea is to essentially use myopic
logarithmic expected utility maximization to define a deflator, using the result of Lemma 1.4
(Note that the idea of proving the FTAP using expected utility maximization is already present
in [17].)

Define the set of dyadic rational numbers D := {m /2% | k € N, m e N}, which is dense in
R . Further, for k € N, define the set of trading times T* = {m/Zk |meN, 0<m< k2k}.
Then, TF C TX for k < k' and UkeN T* = D. In what follows, Xsk(l) denotes the subset of
Xs(1) consisting of wealth processes where trading only may happen at times in T*.

Lemma 1.5. U~nd6r condition NAlg, and for each k € N, there gxists a wifzalth process Xk e
XE(1) with P[Xf > 0] = 1 for all t € TX such that, by defining Y* .= 1/X* E[Y}X, | F] <
Y¥X; holds for all X € XE(1), where TX 55 <t € T*.

Proof. The existence of such “numéraire portfolio” Xk essentially follows from [18, Theorem
4.12]. However, we give here a more elementary, self-contained argument, rather than using the
latter heavy result. Throughout the proof we keep k € N fixed, and we set ’H"i L= T\ {0}.
First of all, it is straightforward to check that condition NA1lg implies that each X € Aj,
and in particular also each NA= {1,...,d}, cannot revive from bankruptcy. This implies
that we can consider an alternative “multiplicative” characterization of wealth processes in
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Xs(1), as we now describe. Consider a process m = (m)tETk such that, for all ¢ €

t € T’fH, x . HT/‘+au<t (1 —i—(nu, ARk>) where, for u € ’]T]fH, ARk = (AR )16{1 ,,,,, d}
is such that ARM = (S;/S;_l/zk - 1)H{S;,1/2t oy fori e {1,...,d}. Then, define a simple
predictable d-dimensional process 6 as follows: fori € {l,...,d} and u €]t — 1/2]‘, t],
where t € T, set 0] = (] X(”

Ti+,nt = (nt),e{l ay is Fi_ 12k~ -measurable A9-valued. Deﬁne X(”) = 1 and, for all

1/2,6/ ' 1/2k)]l{ o) otherwise, set & = 0. It is then
1—1/2%

straightforward to check that X 1.9 'in the notation of (1.1), is an element of Xsk(l), as well

as that X ,1 b= x ,(n) holds for all # € T*. We have then established that 7 generates a wealth
process in Xsk(l). We claim that every wealth process of Xé‘(l) can be generated this way. Indeed,
starting with any predictable d-dimensional process 6 such that X-?, in the notation of (1.1), is

k j _ .
an element of X3 (1), we define n; = (9 S’ 1/2k/Xt 1/2'\)]1{ 1/zk>0} fori € {1,...,d} and

t € ']I‘]_j_+. Then, 7 = (”f)teT’;+ is Ad-valued, 7, = (”t)ie{l dy 18 F;_y jpx-measurable for

t e ']I‘ﬁ o and 7 generates X 1.9 in the way described previously—in particular, X tl A ¢ l(")
holds for all # € TX. (In establishing the claims above it is important that all wealth processes of
Xs cannot revive from bankruptcy.)

Continuing, Lemma 1.4 implies that for all 1 € T there exists a A%-valued and F,_, k-

measurable p; = (p,),e{ 1 y such that, for all A4-valued and Fii 2k -measurable and 7, =

.....

(77;)16 ,,,,, d)> we have

E 1+ (m, ARK)

‘7:1—1/2":| < 1.

Setting Xk to be the wealth process in Xsk (1) generated by p as described in the previous
paragraph, the result of Lemma 1.5 is immediate. [

We proceed with the proof of implication (i) = (ii) of Theorem 1.3, using the notation from
the statement of Lemma 1.5. For all k € N, Y* satisfies Y, YX=1andisa positive supermartingale
when sampled from times in T*, since 1 € R k Therefore for any ¢ € D, the convex hull of
the set {Y/ vk | k € N} is bounded in probablhty We also claim that, under condition NAlg, for
any t € R4, the convex hull of the set {¥, Yk | k € N} is bounded away from zero in probability.
Indeed, for any collection (¥ )eny such that aX > 0 for all k € N, having all but a finite number
of *’s non-zero and satisfying Y 72, a* = 1, we have

o0 1 o0
— Z = Zcx XK e A5(1).
A=
k=1

Since, by Proposition 1.1, {X; | X € As(1)} is bounded in probability for all 7 € R, the previous
fact proves that the convex hull of the set {Yk | k € N} is bounded away from zero in probability.

Now, using [13, Lemma Al 1] one can proceed as in the proof of [15, Lemma 5.2(a)] to infer
the existence of a sequence (Y )keN and some process (Y,),;D such that, for all k € N, Y*isa
convex combination of Y* Yk‘H ...,and ]P’[hm;Cﬁoo Y = Y;, Vt € D] = 1. The discussion of
the preceding paragraph ensures that IP’[O < Yt < 00, Vt eD]=1.
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LetD 3 s <t eD. Then,s € T¢ and r € T for all large enough k € N. According to the
conditional version of Fatou’s Lemma, for all X € [ Ji2; X* we have that

E[Y,X, | Fs] < liminfE[Y*X, | 7] <liminf Y X, = Y, X,. (1.3)
k— 00 k—00

It follows that (?IX,),ED is a supermartingale for all X € U,fil Xsk . (Observe here that we
sample the process YX only at times contained in D.) In particular, (2),,5@ is a supermartingale.

Forany t € Ry define ¥; = limg | |; eD /Y\s—the limit is taken in the P-a.s. sense, and exists in
view of the supermartingale property of (f’\,) teD- Itis straightforward that Y is a cadlag process; it
is also adapted because (F;);cr, is right-continuous. (The argument to obtain adapted and right-
continuous versions of martingale-type processes is classical—see, for example, [19, Section
1.3.A, Proposition 3.14].) Now, fort € Ry,let T € Dbe suchthat T > t; a combinatiorL of the
right-continuity of both Y and the filtration (F;);cR. , the supermartingale property of (¥;);em,
and Lévy’s martingale convergence Theorem (see [30, Theorem 14.2]), give E[?T | Fi] < Y;.
Since IP’[?T > 0] = 1, we obtain P[Y; > 0] = 1. Right-continuity of the filtration (F7);cR, ,
coupled with (1.3), imply that E[Y, X, | F] < Y X forallRy > s <reRjiand X € U,fil XS]‘.
In particular, Y is a cadlag nonnegative supermartingale; since P[Y; > 0] = 1 holds for all
t € R4, we conclude that P[Y; > 0, Vr e R;] = 1.

Of course, 1 € XX and §' € XX hold forall k € Nandi € {1,...,d}. It follows that Y is a
supermartingale, as well as that Y S’ is a supermartingale for all i € {1, ..., d}. In particular, ¥
and Y S = (YS"),‘E{L_._,d} are semimartingales. Consider any X*? in the notation of (1.1). Using
the integration-by-parts formula (both for ¥ X*¢ and for Y S), we obtain

Yx©¥ =x +/ <X;CL6 — (6, Sz—)) dy; +/ (0, d(Y;S)) .
0 0
If X*0 € Xg(x), we have X7 — (9, 5_)

supermartingale property of ¥ and Y S, i
Therefore, Y € Vs, ie., Vs # 0. O

> 0, as well as 0' > 0 fori € {1,...,d}. Then, the
e {1,...,d}, gives that YXx*?isa supermartingale.
Proof ((ii) = (i)). Let Y € Js, and fix T € Ry. Then, supxcy ) E[Y7X7] < 1. In
particular, the set {Y7 X7 | X € X5(1)} is bounded in probability. Since P[Y7 > 0] = 1, the set

{X1 | X € Xs(1)} is bounded in probability as well. An invocation of Proposition 1.1 finishes
the argument. [

Proof ((ii) = (iii)). Let ¥ € Ys. Since S € AXs, YS' is a supermartingale, thus a
semimartingale, for all i € {1, ..., d}. Also, the fa_ct that ¥ > 0 and It6’s formula give that
1/Y is a semimartingale. Therefore, $* = (1/Y)(Y' S") is a semimartingale for alli € {1, ..., d}.
Furthermore, since Y S’ is a nonnegative supermartingale, we have Y, S; = 0 for all r > {Si
on {;Si < oo}, fori € {1,...,d}. Now, using ¥ > 0 again, we obtain that S{ = 0 holds
for all ¢+ > ;Si on {{Si < 00}. In other words, each Sti e {1, ...,d}, cannot revive after
bankruptcy. [

Proof ((iv) = (i)). Since S is a semimartingale, we can consider continuous-time trading. For
x € R4, let X(x) be the set of all wealth processes x*0 = x + fo (6;, dS;), where 0 is
d-dimensional, predictable and S-integrable, fo (6;, dS;)” denotes a vector stochastic integral,
X% >0and0 < (0,5_) < X %6, (Observe that the qualifying subscript “S” denoting simple
trading has been dropped in the definition of Xs(x), since we are considering continuous-time
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trading.) Of course, Xs(x) € X' (x). We shall show in the next paragraph that {X7 | X € X' (1)}
is bounded in probability for all T € R, therefore establishing condition NAlg, in view of
Proposition 1.1.

Foralli € {1,...,d}, write S = S{E(R'), where R' is a semimartingale with R}, = 0. Let
R = (RY) i=1,....d- Itis straightforward to see that X' (1) coincides with the class of all processes of
the form &£ ( fo (74, dR,)), where 7 is predictable and take values in the d-dimensional simplex

A =z = (@)iz1,..a € RT | 2/ = Ofori = 1,...,d, and Y7 < 1}. Since, for all

.....

T T
log <€ (/ (71, th))) = / {7y, dR;)
0 0

holds for all A¢-valued and predictable 7, it suffices to show the boundedness in probability
of the class of all fOT (;, dR;), where 7 ranges in all A%-valued and predictable processes.
Write R = B + M, where B is a process of finite variation and M is a local martingale with
|IAMI| < 1,i € {1,...,d}. Then, f; | (m, dB,)| < 3¢, [,/ 1dB| < co. This establishes the
boundedness in probability of the class of all fOT (s, dB;), where 7 ranges in all A -valued and
predictable processes. We have to show that the same holds for the class of all fOT (mry, dM,),

where 7 is Ad—valuec_l and predictable. For k € N, let o= inf{r € Ry | 2L, (M, M, >
k} AT, Note that [M', M'] .« = [M', M']x_ + |AM;k|2 <k+1holdsforalli € {1,...,d}.

Therefore, using the notation ||n||2 := v/E[|n|?] for a random variable 7, we obtain

k d ok
SN IRERT
i=1 [0

T
/ (s, dM;)

Fix € > 0. Let k = k(€) be such that P[t% < T'] < €/2, and also let £ := d/2(k + 1) /€. Then,

T ok
PU (my, dM,) >z] 51@[#‘ <T]+IP|:/ (7, dM,) >z]
0 0
2

k
TRl
- <

[Mi, Mi], <dvk+1.

L2

L2

<>+

[NSRNQ)

The last estimate is uniform over all A9-valued and predictable 7. We have, therefore, estab-
lished the boundedness in probability of the class of all fOT (¢, dM;), where & ranges in all
A?-valued and predictable processes. This completes the proof. [J

1.6. Proof of Theorem 1.3, statement (2)

In view of statement (1) of Theorem 1.3, we only need to show the validity of (iii)) < (iv)
under the extra assumption of statement (2). This equivalence is really [10, Proposition 2.2], but
we present the few details for completeness.

For the implication (iii) = (iv), simply define R’ = fd(l/Sli_) de fori € {1,...,d},
The latter process is a well-defined semimartingale because, for each i € {1,...,d}, Stis a
semimartingale, St s locally bounded away from zero on the stochastic interval [[0, {S']], and

S =0on [[{Si,oo[[.
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Now, for (iv) = (iii), it is clear that S is a semimartingale. Furthermore, for all i €
{1,...,d}, S" cannot revive from bankruptcy; this follows because stochastic exponentials stay
at zero once they hit zero. [

2. On and beyond the main result
2.1. Comparison with existing literature

Theorem 7.2 of the seminal paper [13] establishes the semimartingale property of S
under condition NFLVR for simple admissible strategies, coupled with a local boundedness
assumption on S (always together with the cadlag property and adaptedness). The assumptions of
Theorem 1.3 are different than the ones in [13]. Condition NA1g (valid for simple, no-short-sales
trading) is weaker than NFLVR for simple admissible strategies. Furthermore, local boundedness
from above is not required in our context, but we do require that each Stie{l,...,d},is
nonnegative. In fact, as we shall argue in Section 2.3, nonnegativity of each S iie {1,...,d},
can be weakened by local boundedness from below, indeed making Theorem 1.3 a generalization
of [13, Theorem 7.2]. Note that if the components of S are unbounded both above and below,
not even condition NFLVR (stated for simple strategies, of course) is enough to ensure the
semimartingale property of S; see [13, Example 7.5].

Interestingly, and in contrast to [13], the proof of Theorem 1.3 provided here does not use the
deep Bichteler—Dellacherie theorem on the characterization of semimartingales as “good integra-
tors” (see [7,27], where one starts by defining semimartingales as good integrators and obtains
the classical definition as a byproduct). Actually, and in view of Proposition 1.1, statement (2) of
Theorem 1.3 can be seen as a “multiplicative” counterpart of the Bichteler—Dellacherie theorem.
Its proof exploits two simple facts: (a) positive supermartingales are semimartingales, which
follows directly from the Doob—Meyer decomposition theorem; and (b) reciprocals of strictly
positive supermartingales are semimartingales, which is a consequence of Itd’s formula. Crucial
in the proof is also the concept of the numéraire portfolio.

Remark 2.1. After the present paper was written, the very interesting preprint [4] appeared,
in which the authors establish a result that polishes [13, Theorem 7.2]. In the latter paper, the
Bichteler—Dellacherie theorem is not assumed, but rather obtained by utilizing a connection to
a no-arbitrage notion which is also a weakening of the NFLVR condition, but in a different
direction than the one used here.

2.2. On the actual strength of condition NAlg

As Theorem 1.3 shows, S is a semimartingale under condition NAlg. In that case, we can
consider the class of nonnegative wealth processes corresponding to continuous-time no-short-
sales trading, containing all X% = x + fo (6;, dS;) with x € Ry, 6 being predictable, and

such that Xf’e < (8,S_)and 0 > 0 fori € {1,...,d} hold. The exact same argument
as in the last paragraph of the proof of (i) = (ii) in Section 1.5 shows that YX is a
nonnegative supermartingale for all wealth processes X resulting from continuous-time no-
short-sales trading. This implies (see the proof of (ii) = (i) in Section 1.5 and the proof of
Proposition 1.1) that there are no arbitrages of the first kind in the class of wealth processes
resulting from continuous-time no-short-sales trading. To recapitulate, condition NAlg actually
implies both that S is a semimartingale and that there are no arbitrages of the first kind in the
class of wealth processes resulting from continuous-time no-short-sales trading.
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2.3. The semimartingale property of S when each S',i € {(1,...,d}, is locally bounded from
below

As mentioned previously, implication (i) = (iii) actually holds even when each S’,i €
{1,...,d}, is locally bounded from below, which we shall establish now. We still, of course,
assume that each %, i € {1, ..., d},is adapted and cadlag. Since “no-short-sales” strategies have
ambiguous meaning when asset prices can become negative, we need to make some changes
in the class of admissible wealth processes. For x € Ry, let XZ(x) denote the class of all
wealth processes X using simple trading as in (1.1) that satisfy X*¢ > 0. Further, set
Xy = Uyer, As(x). Define condition NATj for the class Ag in the obvious manner, replacing
“Xs” with “X” throughout in Section 1.2. Assume then that condition NA 1 holds. To show that
§ is a semimartingale, it is enough to show that (S;« )R, is a semimartingale for each k € N,
where (rk)kEN is a localizing sequence such that St > —kon [0, z%] foralli € {1,...,d} and
k € N. In other words, we might as well assume that St > —kforalli € {1,...,d}. Define
Si := k + S'; then, S is nonnegative for all i € {1,...,d}. Let S = (Si)ie{l ,,,,, dy- If Xs is (in
self-explanatory notation) the collection of all wealth processes resulting from simple, no-short-
sales strategies investing in S, it is straightforward that Xs € X{. Therefore, NA1g holds for
simple, no-short-sales strategies investing in S ; using implication (i) = (iii) in statement (1) of
Theorem 1.3, we obtain the semimartingale property of S. The latter is of course equivalent to S
being a semimartingale.

One might wonder why we do not simply ask from the outset that each S*,i € {1, ...,d}, is
locally bounded from below, since it certainly contains the case where each Stiefl,..., d},
is nonnegative. The reason is that by restricting trading to using only no-short-sales strategies
(which we can do when each S’,i € {1, ...,d}, is nonnegative) enables us to be as general as
possible in extracting the semimartingale property of S from the NA1g condition. Consider, for
example, the discounted asset-price process given by S = alljo,1j + bIj1 00, Where b > a > 0.
This is a really elementary example of a nonnegative semimartingale. Now, if we allow for any
form of simple trading, as long as it keeps the wealth processes nonnegative, it is clear that
condition NA1; will fail (since it is known that at time = 1 there will be a jump of size
(b — a) > 0 in the discounted asset-price process). On the other hand, if we only allow for
no-short-sales strategies, NAlg will hold—this is easy to see directly using Proposition 1.1,
since X7 < (b —a)/aforall T > 1 and X € A5(1). Therefore, we can conclude that S is
a semimartingale using implication (i) = (iii) in statement (1) of Theorem 1.3. (Of course, one
might argue that there is no need to invoke Theorem 1.3 for the simple example here. The point
is that allowing for all nonnegative wealth processes results in a rather weak sufficient criterion
for the semimartingale property of S.) Note also, in passing, that the above simple example
gives an elementary case where Vs # ) (for example, in view of Theorem 1.3), but where
an equivalent supermartingale measure cannot exist, as the process S is nondecreasing and not
identically constant.

2.4. The semimartingale property of S via bounded indirect utility

There has been previous work in the literature obtaining the semimartingale property of S
using the finiteness of the value function of a utility maximization problem via use of only
simple strategies—see, for instance, [1,6,22]. In all cases, there has been an assumption of local
boundedness (or even continuity) on S. We shall offer a result in the same spirit, dropping the
local boundedness requirement. We shall assume either that discounted asset-price processes are
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nonnegative and only no-short-sales simple strategies are considered (which allows for a sharp
result), or that discounted asset-price processes are locally bounded from below. In the latter case,
Proposition 2.2 that follows is a direct generalization of the corresponding result in [1], where
the authors consider locally bounded (both above and below) discounted asset-price processes.
In the statement of Proposition 2.2 below, we use the notation X (x) introduced previously in
Section 2.3.

Proposition 2.2. Let S = (S))i=1....q be such that S' is an adapted and cadlag process for
iefl,...,d}. Also, let U : Ry +— R U {—o00} be a nondecreasing function with U > —o0 on
10, oo] and U (00) = oo. Fix some x > 0. Finally, let T be a finite stopping time. Assume that
either:

e cach S',i € {1, ...,d}, is nonnegative and SUPx e, (x) ELU(XT)] < 00, or
e cach S',i € {1,...,d}, is locally bounded from below and SUPx e X (x) E[U(X71)] < oc.

Then, the process (ST at)ieR,. is a semimartingale.

Proof. Assume first that each S?,i € {1, ..., d}, is nonnegative and that SUPx € Xy (x) E[UX71)] <
0o. Since we only care about the semimartingale property of (S7r):cR, . assume without loss
of generality that S; = St ., for all 7 € Ry. Suppose that condition NAls fails. According to
Proposition 1 1 and Remark 1.2, there exists a sequence (X ") nen of elements in Xg(x)and p > 0
such that IP’[X” > 2n] > pforalln € N.Foralln € N, let X" := (x + X")/2 € Xs(x). Then,
SUP e Xy (x) IE[U(XT)] > liminf, , o E[U(X})] = (1 — p)U(x/2) + pliminf,_, oo U(n) =

This is a contradiction to SUP Y e Xy (x) E[U(XT)] < 0o. We conclude that (S7ar)eRr, is @ semi-
martingale using implication (i) = (iii) in statement (1) of Theorem 1.3.

Under the assumption that each Stiefl,....d}is locally bounded from below and that
SUP X € X (x) E[U(XT)] < o0, the proof is exactly the same as the one in the preceding paragraph,
provided that one replaces “Xs” with “X” throughout, and uses the fact that condition NA1j for
the class X implies the semimartingale property for S, as was discussed in Section 2.3. I

2.5. On the implication (iii) = (i) in Theorem 1.3

If we do not require the additional assumption on S in statement (2) of Theorem 1.3,
implication (iii) = (i) might fail. We present below a counterexample where this happens.

On ({2, F,P), let W be a standard, one-dimensional Brownian motion (with respect to its
own natural filtration—we have not defined (F);er, yet). Define the process & via & =
exp(—t/4 + W;) for t € R,. Since lim;_,oc W;/t = 0, P-a.s., it is straightforward to check
that £ = lim; & = 0, and actually that fooo & dt < oo, both holding P-a.s. Write
& = A 4+ M for the Doob—Meyer decomposition of the continuous submartingale & under its
natural filtration, where A = (1/4) [y & df and M = [ & dW,. Due to [;~ & dr < oo, we
have Aypo < o0 and [M, M)y = fooo |$,|2dt < 00, where [M, M] is the quadratic variation
process of M. In the terminology of [9], £ is a semimartingale up to infinity. If we define
Svia§ = &/q-y fort € [0,1[ and §; = O for t € [I,00[, then § is a nonnegative
semimartingale. Define (F;);er, to be the augmentation of the natural filtration of S. Observe
that ¢5 = 1 and Sgs— = 0; the condition of statement (2) of Theorem 1.3 is not satisfied.
In order to establish that NAlg fails, and in view of Proposition 1.1, it is sufficient to show
that {X; | X € Xs(1)} is not bounded in probability. Using continuous-time trading, define a
wealth process X fort e [0, 1], via Xo = 1 and the dynamics dX,/X, = (1/4)(dS;/S;) for
t € [0, 1[. Then, Xt = exp ((1/16)(t/(1 -0+ A/ HWa- ,))fort e [0, 1[, which implies
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that P[lim;441 X ; = oo] = 1, where “t TTAl” means that ¢ strictly increases to 1. Here, the
percentage of investment is 1/4 € [0, 1], i.e., X is the result of a no-short-sales strategy. One can
then find an approximating sequence (X*)icny such that X¥ € Xs(1) for all k € N, as well as
IP’[|X11‘ -X 1-1/kl < 1] > 1 — 1/k. (Approximation results of this sort are discussed in greater

generality in [29].) Then, (X ]f)keN is not bounded in probability; therefore, NA 15 fails. Of course,
in this example we also have (iii) = (iv) of Theorem 1.3 failing.
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