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Abstract We introduce the concept of numéraires of convex sets in L0+, the non-
negative orthant of the topological vector space L0 of all random variables built over a
probability space. A necessary and sufficient condition for an element of a convex set
C ⊆ L0+ to be a numéraire of C is given, inspired from ideas in financial mathematics.
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0 Introduction

An element of a convex subset C in a topological vector space is called a support point
of C if it maximizes a nonzero continuous linear functional over C. In finite-dimensional
Euclidean spaces, every boundary point of a closed and convex set is a support point
of that set. In contrast, when the topological vector space is infinite-dimensional,
boundary points of a closed convex set can fail to support the set. (In fact, there exist
examples of proper closed convex subsets that have no support points—for a specific
one, see [9].)
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Of immense importance, both from a probabilistic and a functional-analytic point of
view, is the topological vector space L0 of all (equivalence classes of real-valued) ran-
dom variables built over a probability space equipped with a metric compatible with
convergence in probability. Its rich algebraic and lattice structure notwithstanding,
the topological properties of L0 are quite poor. In fact, if the underlying probabil-
ity space is nonatomic, the topological dual of L0 contains only the zero functional
[6, Theorem 2.2, page 18]—in particular, convex sets in L0 cannot a fortiori have
any support points according to the usual definition. In spite (and sometimes in view)
of such issues, research on topological and structural properties of L0 is active and
ongoing (see for example [2,3,5,7,8,10,12]). This note is contributing to this line of
research by offering a nonstandard definition of strictly positive support points of
convex sets in the nonnegative orthant of L0, motivated by the well-known numéraire
property in the field of financial mathematics. The main result is an interesting struc-
tural necessary and sufficient condition for a element of a convex set C ⊆ L0+ to be a
numéraire of C.

1 Numéraires and their structural characterization

1.1 Preliminaries

Let (�,F ,P) be a probability space, and let � be the collection of all probabilities
on (�,F) that are equivalent to (the representative) P ∈ �. Throughout the paper,
L0 denotes the set of all equivalence classes modulo � of finite real-valued random
variables over (�,F). We follow the usual practice of not differentiating between a
random variable and the equivalence class it generates. We use L0+ to denote the subset
of L0 consisting of elements f ∈ L0 such that P [ f < 0] = 0.

The expectation of f ∈ L0+ under Q ∈ � is denoted by EQ[ f ]. For Q ∈ �,
we define a metric dQ on L0 via dQ( f, g) = EQ [min {| f − g|, 1}] for f ∈ L0

and g ∈ L0. The topology on L0 that is induced by the previous metric does not
depend on Q ∈ �. Thus, L0 becomes a complete metric space and L0+ its closed sub-
space; convergence of sequences under the topology generated by this metric is simply
convergence in Q-measure for any Q ∈ �. Unless explicitly stated otherwise, any
topological property (closedness, etc.) pertaining to subsets of L0 will be understood
under the aforementioned topology.

LetC ⊆ L0+. An element f ∈C is called maximal inC if the conditions P[ f ≤ g] = 1
and g ∈C imply P[ f =g]=1; Cmax is then used to denote the set of all maximal ele-
ments in C. Furthermore, C ⊆ L0+ will be called bounded if lim�→∞ sup f∈C Q[ f >�]=0
for some, and then for all, Q ∈ �. The last boundedness property can be seen to coin-
cide with boundedness of C when L0 is viewed as a topological vector space [1,
Definition 5.36, page 186].

1.2 Numéraires

The concept that follows is central in our development.
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Definition 1.1 Let C ⊆ L0+ be convex and g ∈ C. If P [ f > 0, g = 0] = 0 holds
for all f ∈ C, g will be called strictly positive on C. Furthermore, g will be called a
numéraire of C if it is strictly positive on C and there exists a probability Q ∈ � such
that EQ [ f/g | g > 0] ≤ 1 for all f ∈ C. The set of all numéraires of C is denoted by
Cnum.

The following result gives a more functional-analytic flavor to the concept of a
numéraire.

Proposition 1.2 Let C ⊆ L0+ be convex and let g ∈ C be strictly positive on C. Then,
g is a numéraire of C if and only if there exists a σ -finite measure μ on (�,F),
equivalent to the probabilities in �, such that

∫
gdμ = sup f ∈C

∫
f dμ < ∞.

Proof We exclude from the discussion the trivial case C = {0} so that P [g > 0] > 0.
First, assume that there exists a σ -finite measure μ on (�,F), equivalent to the

probabilities in�, such that
∫

gdμ = sup f ∈C
∫

f dμ < ∞. Ifμ[g = 0] = ∞, we can
easily redefine it so that μ[g = 0] < ∞ without affecting the values of the integrals∫

f dμ, for f ∈ C. Therefore, we can assume that μ[g = 0] < ∞. Define Q ∈ � via

Q[A] = 1

2

∫
A gdμ
∫

gdμ
+ 1

2

μ[A ∩ {g = 0}]
μ[{g = 0}] , for A ∈ F ,

using the convention 0/0 = 1. Then, EQ [ f/g | g > 0] = ∫
f dμ/

∫
gdμ ≤ 1 holds

for all f ∈ C.
Conversely, assume that there exists Q ∈ � such that EQ [ f/g | g > 0] ≤ 1 holds

for all f ∈ C. Define μ : F �→ R+ ∪ {∞} via

μ[A] = EQ

[(
1

h
I{g>0} + I{g=0}

)

IA

]

, for A ∈ F .

It is apparent that μ is a σ -finite measure, equivalent to Q ∈ �. Moreover, for any
f ∈ C, we have

∫
f dμ = EQ

[
( f/g)I{g>0}

] = EQ[ f/g | g > 0] Q[g > 0] ≤ Q[g > 0] =
∫

gdμ,

which completes the proof.

�

The previous result offers an interpretation of numéraires as “strictly positive
support points” of convex sets in L0+, since g ∈ Cnum is supported by the “dual”
sigma-finite measure μ. Note that the qualifying “strictly positive” applies both to
the numéraire g ∈ C, as well as to the supporting measure μ. Of course, g is not
a support point of C in the traditional functional-analytic sense, since the mapping
L0+ ∈ f �→ ∫

f dμ is only lower semi-continuous. However, when C is viewed as
a convex set in the Banach space L1(�,F , μ), then g is a support point of C in the
usual sense.
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Let C ⊆ L0+ be convex, and let g ∈ C be strictly positive on C. The question we
focus on is the following: Is there a structural equivalent to the condition that g is
a numéraire of C? Necessary conditions are easy to obtain. For example, if C is to
afford any numéraires, then C has to be bounded, as it immediately follows by a use
of Chebyshev’s inequality. Also, if g ∈ Cnum, it is clearly necessary that g ∈ Cmax. As
we shall shortly see in Sect. 1.3, the previous two necessary conditions (C is bounded
and g ∈ Cmax) are not always sufficient to ensure that g ∈ Cnum. A detailed under-
standing of the issues faced in an example presented in Sect. 1.3 below will enable us
to eventually reach our main result, Theorem 1.4.

1.3 An example

In financial mathematics, a convex set C ⊆ L0+ consisting of terminal values of non-
negative stochastic integrals starting from unit initial value with respect to a semimar-
tingale integrator is used to model discounted outcomes of wealth processes starting
from unit capital. More precisely, the semimartingale integrator models discounted
asset prices and the predictable integrands model investment strategies. As long as
there are no constrains on investment (further from the natural constraints of nonneg-
ativity for the involved wealth processes), and when g ∈ C is such that P [g > 0] = 1,
the condition that C is bounded and g ∈ Cmax is, quite interestingly, equivalent to
g ∈ Cnum. (See [3,4] for a comprehensive treatment of this topic.) However, in the
presence of investment constraints, the situation becomes more complicated, as we
present below with an illustrating example.

Start with a probability space (�,F ,P), rich enough to support ξ ∈ L0+ with
P[ξ > 0] = 1, and P[ξ ≤ ε] > 0 as well as P[1/ξ ≤ ε] > 0 holding for all
ε > 0. Let Si = (Si (t))t∈{0,T } for i ∈ {1, 2} be defined via S1(0) = 1 = S2(0), and
S1(T ) = ξ, S2(T ) = 1 + ξ . Each Si , i ∈ {1, 2} is modeling the discounted price of a
financial asset. For any ϑ = (ϑ1, ϑ2) ∈ R

2, define Xϑ via Xϑ(0) = 1 and

Xϑ(T ) = 1 + ϑ1(S1(T )− S1(0))+ ϑ2(S2(T )− S1(0)) = 1 − ϑ1 + (ϑ1 + ϑ2)ξ ;

then, Xϑ(T ) is modeling the discounted financial outcome at time T of an investment
starting with unit capital and holding a position ϑ in the assets.

We now introduce constraints on investment. Let
C := {

(ϑ1, ϑ2) ∈ R
2+ | ϑ2 ≤ √

ϑ1 ≤ 1
}
, which is a convex and compact subset of

R
2+. It is easy to check that Xϑ(T ) ≥ 0, for all ϑ ∈ C . Consider

C = {
XϑT | ϑ ∈ C

} = {1 − ϑ1 + (ϑ1 + ϑ2)ξ | ϑ ∈ C} ,

which is a convex, closed and bounded subset of L0+. Using the fact that P[ξ ≤ ε] > 0
and P[1/ξ ≤ ε] > 0 hold for all ε > 0, it is straightforward to check that

Cmax = {
1 − γ + (γ + √

γ )ξ | γ ∈ [0, 1]} ; (1.1)

in particular, 1 ∈ Cmax ⊆ C.
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Although C is bounded and 1 ∈ Cmax, we claim that 1 /∈ Cnum. To this end, suppose
that Q ∈ � is such that EQ [ f ] ≤ 1 for all f ∈ C. Then, EQ

[
1 − γ + (γ + √

γ )ξ
]≤1

for all γ ∈ [0, 1]. Rearranging, EQ [ξ ] ≤ γ /
(
γ + √

γ
) = √

γ /
(√
γ + 1

)
, for all

γ ∈ ]0, 1]. This would imply that EQ [ξ ] = 0, i.e., Q [ξ > 0] = 0 which, in view of
P[ξ > 0] = 1, clearly contradicts the equivalence between P and Q.

Remark 1.3 It is worthwhile to try to understand what structural property of C pre-
vented g = 1 from being a numéraire of C in the above example, since it will help
shed light on the exact necessary and sufficient conditions needed in the statement of
our main result. For the time being, consider any C ⊆ L0+ and any g ∈ C. Suppose that
g ∈ Cnum, and let Q ∈ � be as in Definition 1.1. Pick f ∈ C and δ ∈ R+ such that,
with f ′ := (1 + δ) f − δg, we have f ′ ∈ L0+. If C represents terminal outcomes from
investment as in the example above, f ′ corresponds to taking a long position of (1+δ)
units of the portfolio leading to the outcome f and a short position on δ units of the
portfolio leading to the outcome g; the fact that f ′ ∈ L0+ guarantees that there is no
risk of going negative. As EQ [ f/g | g > 0] ≤ 1, we obtain EQ

[
f ′/g | g > 0

] ≤ 1 as
well. Note that the previous holds for all possible f ′ ∈ L0+ constructed as before. The
upshot is the following: if we enlarge C by including all such combinations (taking
short positions on g), a use of Chebyshev’s inequality implies that we still end up with
a set that is bounded. The previous observation, however simple, will be key in the
development.

We return to our concrete example. For n ∈ N, let fn := n/(1 + n) +(
1/(1 + n)+ 1/

√
1 + n

)
ξ ; by (1.1), fn ∈ Cmax ⊆ C. With f ′

n := (1 + n) fn − n =
(1 + √

1 + n )ξ , we have f ′
n ∈ L0+ for all n ∈ N. By the discussion in Remark 1.3

above, if 1 were to be a numéraire of C, { f ′
n | n ∈ N

}
would have to be a bounded

subset of L0+, which is plainly false.

1.4 The equivalence result

Guided by the discussion of Sect. 1.3, for C ⊆ L0+ and g ∈ C we define CSg(C) as the
class of all K ⊆ L0+ such that:

(CS1) C ⊆ K.
(CS2) K is convex and closed.
(CS3) If f ∈ K and δ ∈ R+ are such that ((1+δ) f −δg) ∈ L0+, then ((1+δ) f −δg) ∈

K.

It is clear that CSg(C) is closed under arbitrary intersections. Furthermore, L0+ ∈
CSg(C), i.e., CSg(C) �= ∅. Therefore, there exists a minimal set in CSg(C), which we
shall denote by csg(C):

csg(C) :=
⋂

K∈CSg(C)
K. (1.2)

The combination of (CS1) and (CS2) plainly states that sets in CSg(C) are closed and
convex enlargements of C. Using jargon from financial mathematics, (CS3) states that
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these enlargements of C are at least large enough to contain all results from leveraged
positions using short selling of g, so long as these combinations lead to nonnegative
outcomes. The minimal way of doing so is given by the set csg(C) of (1.2). (In csg(C),
“c” is used as a mnemonic for closed and convex and “sg” as a mnemonic for short
sales in g.) As there does not seem to exist a constructive way to obtain csg(C) from
C, (1.2) is utilized as its definition.

After all the preparation, we are ready to state our main equivalence result.

Theorem 1.4 Let C ⊆ L0+ be convex, and let g ∈ C be strictly positive on C. Define
csg(C) as in (1.2). Then, g ∈ Cnum if and only if csg(C) is bounded.

If g ∈ Cnum, it easily follows that csg(C) is bounded. Indeed, pick a Q ∈ �, such
that EQ [ f/g | g > 0] ≤ 1 for all f ∈ C. Define

K :=
{

h ∈ L0+ | P [h > 0, g = 0] = 0 and EQ [h/g | g > 0] ≤ 1
}
.

It is straightforward to check that K ∈ CSg(C); this means that csg(C) ⊆ K. By
Chebyshev’s inequality, K is bounded; therefore, csg(C) is bounded as well. The
proof of the more involved converse implication is discussed in Sect. 2 below.

2 The proof of Theorem 1.4

Let C ⊆ L0+ be convex, and let g ∈ C be strictly positive on C. Assume that csg(C) is
bounded. To complete the proof of Theorem 1.4, we have to establish that g ∈ Cnum.
In order to ease the reading and understanding, we split the proof in four steps.

Step 1 We begin by showing the we can reduce the proof to the case g = 1. Indeed,
define the convex set C̃g := {

I{g=0} + I{g>0}( f/g) | f ∈ C}
. Then, 1 ∈ C̃g is strictly

positive on C̃g . One can check that cs1(C̃g) = {
I{g=0} + I{g>0}(h/g) | h ∈ csg(C)

}
.

This implies that csg(C) is bounded if and only if cs1(C̃g) is bounded. Now, suppose
that 1 ∈ C̃g is a numéraire of C̃g; in other words, that there exists Q ∈ � such that
EQ [ f ] ≤ 1 holds for all f ∈ C̃g . The last is equivalent to EQ

[
( f/g)I{g>0}

] ≤ Q[g >
0] holding for all f ∈ C, which shows that g ∈ Cnum.

In view of the above discussion, we assume from now on until the end of the proof
that g = 1.

Step 2 Define S := {
f ∈ L0+ | 0 ≤ f ≤ h for some h ∈ cs1(C)

}
be the solid hull

of cs1(C). We shall show below that 1 ∈ Smax and S ∈ CS1(C).
Clearly, 1 ∈ Smax is equivalent to 1 ∈ cs1(C)max. Suppose then that f ∈ cs1(C)

is such that P [ f ≥ 1] = 1. By property (CS3) of the sets in CS1(C) mentioned in
Sect. 1.4, we have fn := f + n( f − 1) = ((n + 1) f − n) ∈ cs1(C) for all n ∈ N.
If P[ f > 1] > 0, the cs1(C)-valued sequence ( fn)n∈N would fail to be bounded.
Therefore, P[ f = 1] = 1, which implies that 1 ∈ cs1(C)max.

We proceed in showing that S ∈ CS1(C). We have C ⊆ cs1(C) ⊆ S, which shows
that S satisfies property (CS1). Further, it is straightforward to check that S is convex
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and bounded. It is also true that S is closed. (To see the last fact, pick an S-valued
sequence ( fn)n∈N that converges to f ∈ L0+; we need to show that f ∈S. By passing to
a subsequence if necessary, we may assume that P [limn→∞ fn = f ] = 1. Let (̃hn)n∈N

be a cs1(C)-valued sequence with P
[

fn ≤ h̃n
] = 1 for all n ∈ N. By [3, Lemma A1.1],

we can extract a sequence (hn)n∈N such that, for each n ∈ N, hn is a convex combi-
nation of h̃n, h̃n+1, . . ., as well as P [limn→∞ hn = h] = 1 holds for some h ∈ L0+.
Of course, h ∈ cs1(C) and it is easy to see that P [ f ≤ h] = 1. We then conclude
that f ∈ S.) This shows that S satisfies property (CS2). Now, let f ∈ S be such that
((1 + δ) f − δ) ∈ L0+ for some δ ∈ R+. Pick h ∈ cs1(C) with P [ f ≤ h] = 1. Then,
((1 + δ)h − δ) ∈ L0+ also holds. By definition of cs1(C), we have ((1 + δ)h − δ) ∈
cs1(C). As ((1 + δ) f − δ) ∈ L0+ and P [(1 + δ) f − δ ≤ (1 + δ)h − δ] = 1, we
obtain that ((1 + δ) f − δ) ∈ S; therefore, S also satisfies property (CS3). We con-
clude that S ∈ CS1(C).

Step 3 In the sequel, L∞ denotes the space of essentially bounded (modulo P) ele-
ments of L0. Note that topological notions are still considered under L0.

Define L := S ∩ L∞. All the statements regarding L below, which we shall be
using tacitly, follow in a straightforward way from the properties of S:

• L is convex and solid. (The latter means that 0 ≤ f ≤ g ∈ L implies f ∈ L.)
• 1 ∈ Lmax.
• For all f ∈ S and n ∈ N,min { f, n} ∈ L.
• For any uniformly bounded (modulo P) L-valued sequence ( fn)n∈N that converges

to f ∈ L0+, we have f ∈ L.
• If f ∈ L and δ ∈ R+ are such that ((1 + δ) f − δ) ∈ L0+, then ((1 + δ) f − δ) ∈ L.

Continuing, define Aα := α(L − 1) = {α( f − 1) | f ∈ L} for α ∈ R+, as well as
J := ⋃

α∈R+ Aα . We shall show below that J is a weak*-closed convex cone in L∞,

satisfying J = J − L∞+ and J ∩ L∞+ = {0}. (We obviously define L∞+ := L0+ ∩ L∞;
furthermore, the weak* topology on the Banach space L∞ equipped with the usual
L∞-norm is defined as usual.)

It is clear that J is a convex cone in L∞. Also, since 1 ∈ Lmax,J ∩ L∞+ = {0} is
immediate. We proceed in showing that J = J − L∞+ = {

φ − h | φ ∈ J , h ∈ L∞+
}
.

Since J ⊆ J − L∞+ , we only have to show that if ψ = φ − h where φ ∈ J and
h ∈ L∞+ , then ψ ∈ J . We assume that P[h > 0] > 0; otherwise, ψ ∈ J is trivial.
Write φ = α( f − 1), where f ∈ L and α ∈ R+. With η = ‖h‖∞ ∈ R+, so that
P[h ≤ η] = 1, let f ′ := η/(α + η)+ (α/(α + η)) f . Since 1 ∈ L, f ∈ L, and L is
convex, we have f ′ ∈ L. Now, define f ′′ := (η− h)/(α+ η)+ (α/(α + η)) f ; then
f ′′ ∈ L∞+ and f ′′ ≤ f ′; since L is solid, f ′′ ∈ L. Then,

ψ = φ − h = α( f − 1)− h = (α + η)( f ′′ − 1) ∈ Aα+η ⊆ J ,

which establishes our claim J = J − L∞+ .
It only remains to establish that J is weak*-closed in L∞. Before this is done, we

show that ψ ∈ J and P [ψ ≥ −1] = 1 imply ψ ∈ A1. First, note that Aα ⊆ Aβ

whenever 0 ≤ α < β: indeed, for f ∈ L, use the fact that L is convex to write
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α( f − 1) = β( f ′ − 1), where

f ′ :=
(
α

β
f + β − α

β

)

∈ L.

Now, let ψ ∈ Aα with P [ψ ≥ −1] = 1. If α ≤ 1, ψ ∈ A1 is obvious by the
above discussion. Assume that α > 1. Write ψ = α( f − 1) for f ∈ L and note
that P [ψ ≥ −1] = 1 translates to (α f − (α − 1)) ∈ L0+. In that case, with f ′ :=
α f − (α − 1) we have f ′ ∈ L. But then, ψ = α( f − 1) = ( f ′ − 1) ∈ A1.

We shall now show that J is weak*-closed in L∞. By combining the Krein–
Smulian theorem with the fact that, for uniformly bounded and convex sets of L∞,
weak*-closedness coincides with L0-closedness (in this respect, see also [3, Theorem
2.1]), it suffices to show that for any J -valued sequence (φn)n∈N that converges (in
L0) to φ ∈ L0 and is such that P [|φn| ≤ 1] = 1 for all n ∈ N, we have φ ∈ J .
As P [φn ≥ −1] = 1 for all n ∈ N, (φn)n∈N is A1-valued by the discussion of the
preceding paragraph. For n ∈ N, write fn = φn + 1; then, ( fn)n∈N is L-valued, it
converges to f := φ + 1 and P [0 ≤ fn ≤ 2] = 1 for all n ∈ N. From the properties
of L, it follows that f ∈ L, i.e., that φ ∈ A1 ⊆ J .

Step 4 We can now finish the proof of Theorem 1.4. Using Step 3 above, an invocation
of the Kreps–Yan separation theorem (see [11,13]) gives the existence of a probability
Q ∈ �, such that EQ [φ] ≤ 0 holds for all φ ∈ J . (Expectations under probabil-
ities in � of elements of L∞ are always well-defined.) It follows that EQ [ f ] ≤ 1
for all f ∈ L. For f ∈ S, we have min { f, n} ∈ L for all n ∈ N. Then, EQ [ f ] =
limn→∞ EQ [min { f, n}] ≤ 1 holds for all f ∈ S; in other words, EQ [ f ] ≤ 1 for all
f ∈ S. Finally, since C ⊆ cs1(C) ⊆ S, we obtain EQ [ f ] ≤ 1 for all f ∈ C.
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