next up previous
Next: About this document ... Up: Contents Previous: Multiple Regression

Tests for goodness-of-fit

Activity 14.1   Show that the two forms for $ X^2$ are equivalent.
$ \blacksquare$

Answer 14.1  

$\displaystyle X^2$ $\displaystyle = \sum \frac{(O_i-E_i)^2}{E_i}$    
  $\displaystyle =\sum \frac{O_i^2-2O_iE_i+E_i^2}{E_i}$    
  $\displaystyle =\sum\left[\frac{O_i^2}{E_i}-2O_i +E_i\right]$    
  $\displaystyle =\sum\frac{O_i^2}{E_i}-2\sum O_i + \sum E_i$    
  $\displaystyle =\sum\frac{O_i^2}{E_i} -2n +n.$    

The fact that $ \sum E_i=n$ follows from $ E_i=n\pi_i$ and $ \sum
\pi_i=1$.
$ \blacksquare$

Activity 14.2   Show from results for the binomial distribution that $ EX^2=k-1$. This is exactly the mean of a $ \chi^2_{(k-1)}$ distribution.
$ \blacksquare$

Answer 14.2   We have

$\displaystyle X^2 = \sum \frac{(O_i-E_i)^2}{E_i}
$

and so

$\displaystyle E[X^2]$ $\displaystyle = \sum \frac{E[(O_i-E_i)^2]}{E_i}$    
  $\displaystyle =\sum \frac{\operatorname{var}O_i}{E_i}$    
  $\displaystyle =\sum \frac{n\pi_i(1-\pi_i)}{n\pi_i}$    
  $\displaystyle =\sum (1-\pi_i)$    
  $\displaystyle =k-\sum\pi_i$    
  $\displaystyle = k-1.$    


$ \blacksquare$


next up previous
Next: About this document ... Up: selftestnew Previous: Multiple Regression
M.Knott 2002-09-12