next up previous
Next: Sampling distributions Up: selftestnew Previous: Univariate distributions

Bivariate distributions

Activity 4.1   How would the scatter diagram change if the random variables were discrete rather than continuous?
$ \blacksquare$

Answer 4.1   If the random variables are discrete, there will be a possibility of many points at the same place in the scatter diagram. For instance, if both $ X$ and $ Y$ take only positive integer values, we might get several observations with $ X=1, Y=1$, leading to several points at $ (1,1)$. The coincident points are hard to represent adequately in the scatter diagram. Sometimes a bigger dot is used when there are several points.
$ \blacksquare$

Activity 4.2   Write down the marginal distribution of $ Y$, and the conditional distributions of $ X$ given $ Y$.
$ \blacksquare$

Answer 4.2   The marginal distribution of $ Y$ is found from the column totals.

$\displaystyle P(Y=0) = P[(X,Y)=(0,0)]+P[(X,Y)=(1,0)]+P[(X,Y)=(2,0)]
$

$\displaystyle = 1/21+6/21+3/21 = 10/21.
$

$\displaystyle P(Y=1) = P[(X,Y)=(0,1)]+P[(X,Y)=(1,1)]+P[(X,Y)=(2,1)]
$

$\displaystyle = 4/21+6/21+0/21 = 10/21.
$

$\displaystyle P(Y=2) = P[(X,Y)=(0,2)]+P[(X,Y)=(1,2)]+P[(X,Y)=(2,2)]
$

$\displaystyle = 1/21+0/21+0/21 = 1/21.
$

The conditional distribution of $ X$ for $ Y=0$ is found by dividing the probabilities in the first column by the first column total.

$\displaystyle P(X=0\vert Y=0) = P(X=0,Y=0)/P(Y=0)= (1/21)/(10/21) = 1/10,
$

$\displaystyle P(X=1\vert Y=0) =P(X=1,Y=0)/P(Y=0)= (6/21)/(10/21) = 6/10=3/5,
$

$\displaystyle P(X=2\vert Y=0) =P(X=2,Y=0)/P(Y=0)= (3/21)/(10/21) = 3/10.
$

The conditional distribution of $ X$ for $ Y=1$ is found by dividing the probabilities in the second column by the second column total.

$\displaystyle P(X=0\vert Y=1) = P(X=0,Y=1)/P(Y=1)= (4/21)/(10/21) = 4/10=2/5,
$

$\displaystyle P(X=1\vert Y=1) =P(X=1,Y=1)/P(Y=1)= (6/21)/(10/21) = 6/10=3/5,
$

$\displaystyle P(X=2\vert Y=1) =P(X=2,Y=1)/P(Y=1)= (0/21)/(10/21) = 0.
$

The conditional distribution of $ X$ for $ Y=2$ is found by dividing the probabilities in the third column by the third column total. In fact, we know for sure that $ X=0$ if $ Y=2$.

$\displaystyle P(X=0\vert Y=2) = P(X=0,Y=2)/P(Y=2)= (1/21)/(1/21) = 1,
$

$\displaystyle P(X=1\vert Y=2) =P(X=1,Y=2)/P(Y=2)= (0/21)/(1/21) = 0,
$

$\displaystyle P(X=2\vert Y=2) =P(X=2,Y=2)/P(Y=2)= (0/21)/(1/21) = 0.
$


$ \blacksquare$

Activity 4.3   Nothing in principle stops us from thinking about the joint distribution of $ (Y,Y)$, though this is a fairly pointless thing to do except for consistency of approach. From the last definition of $ Y$, write down the table of probabilities for the joint distribution $ (Y,Y)$.
$ \blacksquare$

Answer 4.3  


Table 4.1: Probabilities for joint distribution of $ (Y,Y)$
    $ Y$
    0 $ 1$ $ 2$
  0 $ 10/21$ 0 0
$ Y$ $ 1$ 0 $ 10/21$ 0
  $ 2$ 0 0 $ 1/21$


$ \blacksquare$

Activity 4.4   Why isn't (4.1) any good for continuous variables?
$ \blacksquare$

Answer 4.4   For continuous random variables $ X,Y$, $ P[X=x,Y=y]=0$ and $ P[X=x]=0$, $ P[Y=y]=0$. So for continuous variables, $ P[X=x,Y=y]=P[X=x]P[Y=y]$ for all $ x,y$ whether or not there is independence for $ X$ and $ Y$
$ \blacksquare$

Activity 4.5   Show that if $ P(\{X\le x \}\cap \{Y\le
y\})=(1-e^{-x})(1-e^{-y})$ for all $ x,y>0$, then $ X$ and $ Y$ are independent random variables, each with an exponential distribution. (Hint: use (4.2).)
$ \blacksquare$

Answer 4.5   The righthand side of the result given is the product of the cdf for an exponential random variable $ X$ with mean 1 and the cdf for an exponential random variable $ Y$ with mean 1. So the result follows from (4.2).
$ \blacksquare$

Activity 4.6   There are other ways to write the covariance. Show that

$\displaystyle \operatorname{cov}(X, Y) = E[XY] -E[X]E[Y],
$

and

$\displaystyle \operatorname{cov}(X, Y) = E[(X-E(X))Y] = E[X(Y-E(Y))].
$


$ \blacksquare$

Answer 4.6  

$\displaystyle \operatorname{cov}(X, Y)$ $\displaystyle = E[(X-E(X))(Y-E(Y))]$    
  $\displaystyle =E[XY-XE(Y)-E(X)Y+E(X)E(Y)]$    
  $\displaystyle =E[XY]+E[-XE(Y)]+E[-E(X)Y]+E[E(X)E(Y)]$    
  $\displaystyle =E[XY]-E(Y)E[X]-E(X)E[Y]+E(X)E(Y)$    
  $\displaystyle =E[XY]-E(X)E(Y)$    

$\displaystyle E[(X-E(X))Y]$ $\displaystyle =E[XY-E(X)Y]$    
  $\displaystyle =E[XY]+E[-E(X)Y]$    
  $\displaystyle =E[XY]-E(X)E[Y]$    
  $\displaystyle =\operatorname{cov}(X,Y).$    

The remaining result follows by an argument symmetric with the last one.
$ \blacksquare$

Activity 4.7   Suppose that $ \operatorname{var}(X)=\operatorname{var}(Y)=1$, and that $ X$ and $ Y$ have correlation coefficient $ \rho$. Show that it follows from $ \operatorname{var}(X-\rho Y)\ge 0$ that $ \rho^2\le 1$.
$ \blacksquare$

Answer 4.7  

0 $\displaystyle \le \operatorname{var}(X-\rho Y)$    
  $\displaystyle =\operatorname{var}X -2\rho \operatorname{cov}(X,Y)+\rho^2\operatorname{var}Y$    
  $\displaystyle =1-2\rho^2 +\rho^2$    
  $\displaystyle =(1-\rho^2).$    

So $ 1-\rho^2\ge 0$, and so $ \rho^2\le 1$.
$ \blacksquare$


next up previous
Next: Sampling distributions Up: selftestnew Previous: Univariate distributions
M.Knott 2003-11-05